ﻻ يوجد ملخص باللغة العربية
Pattern formation from homogeneity is well-studied, but less is known concerning symmetry-breaking instabilities in heterogeneous media. It is nontrivial to separate observed spatial patterning due to inherent spatial heterogeneity from emergent patterning due to nonlinear instability. We employ WKBJ asymptotics to investigate Turing instabilities for a spatially heterogeneous reaction-diffusion system, and derive conditions for instability which are loc
Reaction-diffusion processes across layered media arise in several scientific domains such as pattern-forming E. coli on agar substrates, epidermal-mesenchymal coupling in development, and symmetry-breaking in cell polarisation. We develop a modellin
Coupled nonlinear oscillators can exhibit a wide variety of patterns. We study the Brusselator as a prototypical autocatalytic reaction diffusion model. Working in the limit of strong nonlinearity provides a clear timescale separation that leads to a
The study of pattern-forming instabilities in reaction-diffusion systems on growing or otherwise time-dependent domains arises in a variety of settings, including applications in developmental biology, spatial ecology, and experimental chemistry. Ana
We show that subsets of interacting oscillators may synchronize in different ways within a single network. This diversity of synchronization patterns is promoted by increasing the heterogeneous distribution of coupling weights and/or asymmetries in s
We report experimental observation of the conversion of a phase-invariant nonlinear system into a phase-locked one via the mechanism of rocking [G. J. de Valcarcel and K. Staliunas, Phys. Rev. E 67, 026604 (2003)]. This conversion results in that vor