ترغب بنشر مسار تعليمي؟ اضغط هنا

Extendable shellability for $d$-dimensional complexes on $d+3$ vertices

71   0   0.0 ( 0 )
 نشر من قبل Anton Dochtermann
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that for all $d geq 1$ a shellable $d$-dimensional simplicial complex with at most $d+3$ vertices is extendably shellable. The proof involves considering the structure of `exposed edges in chordal graphs as well as a connection to linear quotients of quadratic monomial ideals.

قيم البحث

اقرأ أيضاً

We show that the size of the largest simple d-cycle in a simplicial d-complex $K$ is at least a square root of $K$s density. This generalizes a well-known classical result of ErdH{o}s and Gallai cite{EG59} for graphs. We use methods from matroid theory applied to combinatorial simplicial complexes.
We provide a simple characterization of simplicial complexes on few vertices that embed into the $d$-sphere. Namely, a simplicial complex on $d+3$ vertices embeds into the $d$-sphere if and only if its non-faces do not form an intersecting family. As immediate consequences, we recover the classical van Kampen--Flores theorem and provide a topological extension of the ErdH os--Ko--Rado theorem. By analogy with Farys theorem for planar graphs, we show in addition that such complexes satisfy the rigidity property that continuous and linear embeddability are equivalent.
In this paper we enumerate the cardinalities for the set of all vertices of outdegree $ge k$ at level $ge ell$ among all rooted ordered $d$-trees with $n$ edges. Our results unite and generalize several previous works in the literature.
Given a finite set $A subseteq mathbb{R}^d$, points $a_1,a_2,dotsc,a_{ell} in A$ form an $ell$-hole in $A$ if they are the vertices of a convex polytope which contains no points of $A$ in its interior. We construct arbitrarily large point sets in gen eral position in $mathbb{R}^d$ having no holes of size $O(4^ddlog d)$ or more. This improves the previously known upper bound of order $d^{d+o(d)}$ due to Valtr. The basic version of our construction uses a certain type of equidistributed point sets, originating from numerical analysis, known as $(t,m,s)$-nets or $(t,s)$-sequences, yielding a bound of $2^{7d}$. The better bound is obtained using a variant of $(t,m,s)$-nets, obeying a relaxed equidistribution condition.
We say that a pure $d$-dimensional simplicial complex $Delta$ on $n$ vertices is shelling completable if $Delta$ can be realized as the initial sequence of some shelling of $Delta_{n-1}^{(d)}$, the $d$-skeleton of the $(n-1)$-dimensional simplex. A w ell-known conjecture of Simon posits that any shellable complex is shelling completable. In this note we prove that vertex decomposable complexes are shelling completable. In fact we show that if $Delta$ is a vertex decomposable complex then there exists an ordering of its ground set $V$ such that adding the revlex smallest missing $(d+1)$-subset of $V$ results in a complex that is again vertex decomposable. We explore applications to matroids, shifted complexes, as well as $k$-vertex decomposable complexes. We also show that if $Delta$ is a $d$-dimensional complex on at most $d+3$ vertices then the notions of shellable, vertex decomposable, shelling completable, and extendably shellable are all equivalent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا