ترغب بنشر مسار تعليمي؟ اضغط هنا

The influence of a top-heavy integrated galactic IMF and dust on the chemical evolution of high-redshift starbursts

184   0   0.0 ( 0 )
 نشر من قبل Marco Palla
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effects of the integrated galactic initial mass function (IGIMF) and dust evolution on the abundance patterns of high redshift starburst galaxies. In our chemical models, the rapid collapse of gas clouds triggers an intense and rapid star formation episode, which lasts until the onset of a galactic wind, powered by the thermal energy injected by stellar winds and supernova explosions. Our models follow the evolution of several chemical elements (C, N, $alpha$-elements and Fe) both in the gas and dust phases. %The most recent stellar yield and dust prescriptions are adopted. We test different values of $beta$, the slope of the embedded cluster mass function for the IGIMF, where lower $beta$ values imply a more top-heavy initial mass function (IMF). The computed abundances are compared to high-quality abundance measurements obtained in lensed galaxies and from composite spectra in large samples of star-forming galaxies in the redshift range $2 lesssim z lesssim 3$. The adoption of the IGIMF causes a sensible increase of the rate of star formation with respect to a standard Salpeter IMF, with a strong impact on chemical evolution. We find that in order to reproduce the observed abundance patterns in these galaxies, either we need a very top-heavy IGIMF ($beta < 2$) or large amounts of dust. In particular, if dust is important, the IGIMF should have $beta ge 2$, which means an IMF slightly more top-heavy than the Salpeter one. The evolution of the dust mass with time for galaxies of different mass and IMF is also computed, highlighting that the dust amount increases with a top-heavier IGIMF.



قيم البحث

اقرأ أيضاً

Star formation rates (SFR) larger than 1000 Msun/ yr are observed in extreme star bursts. This leads to the formation of star clusters with masses > 10^6 Msun in which crowding of the pre-stellar cores may lead to a change of the stellar initial mass function (IMF). Indeed, the large mass-to-light ratios of ultra-compact dwarf galaxies and recent results on globular clusters suggest the IMF to become top-heavy with increasing star-forming density. We explore the implications of top-heavy IMFs in these very massive and compact systems for the integrated galactic initial mass function (IGIMF), which is the galaxy-wide IMF, in dependence of the star-formation rate of galaxies. The resulting IGIMFs can have slopes, alpha_3, for stars more massive than about 1 Msun between 1.5 and the Salpeter slope of 2.3 for an embedded cluster mass function (ECMF) slope (beta) of 2.0, but only if the ECMF has no low-mass clusters in galaxies with major starbursts. Alternatively, beta would have to decrease with increasing SFR >10 Msun/ yr such that galaxies with major starbursts have a top-heavy ECMF. The resulting IGIMFs are within the range of observationally deduced IMF variations with redshift.
We examine the influence of the environment on the chemical abundances of late-type galaxies with masses of 10^9.1 M_sun - 10^11 M_sun using data from the Sloan Digital Sky Survey(SDSS). We find that the environmental influence on galactic chemical a bundances is strongest for galaxies with masses of 10^9.1 M_sun to 10^9.6 Msun. The galaxies in the densest environments may exceed the average oxygen abundances by about 0.05 dex (the median value of the overabundances for 101 galaxies in the densest environments) and show higher abundances in nitrogen by about 0.1. The abundance excess decreases with increasing galaxy mass and with decreasing environmental density. Since only a small fraction of late-type galaxies is located in high-density environments these galaxies do not have a significant influence on the general X/H - M relation. The metallicity - mass relations for isolated galaxies and for galaxies with neighbors are very similar. The mean shift of non-isolated galaxies around the metallicity - mass relation traced by the isolated galaxies is less than 0.01 dex for oxygen and less than 0.02 dex for nitrogen. The scatter in the galactic chemical abundances is large for any number of neighbor galaxies (at any environmental density), i.e., galaxies with both enhanced and reduced abundances can be found at any environmental density. This suggests that environmental effects do not play a key role in evolution of late-type galaxies as was also concluded in some of the previous studies.
142 - Lichen Liang 2019
Dust temperature is an important property of the interstellar medium (ISM) of galaxies. It is required when converting (sub)millimeter broadband flux to total infrared luminosity (L_IR), and hence star formation rate, in high-z galaxies. However, dif ferent definitions of dust temperatures have been used in the literature, leading to different physical interpretations of how ISM conditions change with, e.g., redshift and star formation rate. In this paper, we analyse the dust temperatures of massive (M* > 10^10 Msun) z=2-6 galaxies with the help of high-resolution cosmological simulations from the Feedback in Realistic Environments (FIRE) project. At z~2, our simulations successfully predict dust temperatures in good agreement with observations. We find that dust temperatures based on the peak emission wavelength increase with redshift, in line with the higher star formation activity at higher redshift, and are strongly correlated with the specific star formation rate. In contrast, the mass-weighted dust temperature does not strongly evolve with redshift over z=2-6 at fixed IR luminosity but is tightly correlated with L_IR at fixed z. The mass-weighted temperature is important for accurately estimating the total dust mass. We also analyse an equivalent dust temperature for converting (sub)millimeter flux density to total IR luminosity, and provide a fitting formula as a function of redshift and dust-to-metal ratio. We find that galaxies of higher equivalent (or higher peak) dust temperature (warmer dust) do not necessarily have higher mass-weighted temperatures. A two-phase picture for interstellar dust can explain the different scaling relations of the various dust temperatures.
The mean alpha-to-iron abundance ratio ([$alpha$/Fe]) of galaxies is sensitive to the chemical evolution processes at early time, and it is an indicator of star formation timescale ($tau_{{rm SF}}$). Although the physical reason remains ambiguous, th ere is a tight relation between [$alpha$/Fe] and stellar velocity dispersion ($sigma$) among massive early-type galaxies (ETGs). However, no work has shown convincing results as to how this relation behaves at low masses. We assemble 15 data sets from the literature and build a large sample that includes 192 nearby low-mass ($18<sigma<80$~kms) ETGs. We find that the [$alpha$/Fe]-$sigma$ relation generally holds for low-mass ETGs, except in extreme environments. Specifically, in normal galaxy cluster environments, the [$alpha$/Fe]-$sigma$ relation and its intrinsic scatter are, within uncertainties, similar for low-mass and high-mass ETGs. However, in the most massive relaxed galaxy cluster in our sample, the zero point of the relation is higher and the intrinsic scatter is significantly larger. By contrast, in galaxy groups the zero point of the relation offsets in the opposite direction, again with substantial intrinsic scatter. The elevated [$alpha$/Fe] of low-mass ETGs in the densest environments suggests that their star formation was quenched earlier than in high-mass ETGs. For the low-mass ETGs in the lowest density environments, we suggest that their more extended star formation histories suppressed their average [$alpha$/Fe]. The large scatter in [$alpha$/Fe] may reflect stochasticity in the chemical evolution of low-mass galaxies.
The first part of this paper deals with the impact of nonsolar and - for late-type, dwarf, and high redshift galaxies - generally subsolar abundances on the interpretation of observational data for starburst galaxies. It points out the differences in colors, luminosities, emission lines, etc. obtained from a model using low metallicity input physics for a starburst on top of the stellar population of a galaxy as compared to an otherwise identical model using solar metallicity input physics only. The second part deals with the chemical evolution during a starburst and contrasts model predictions with observational clues.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا