ﻻ يوجد ملخص باللغة العربية
In two earlier papers we derived congruence formats with regard to transition system specifications for weak semantics on the basis of a decomposition method for modal formulas. The idea is that a congruence format for a semantics must ensure that the formulas in the modal characterisation of this semantics are always decomposed into formulas that are again in this modal characterisation. The stability and divergence requirements that are imposed on many of the known weak semantics have so far been outside the realm of this method. Stability refers to the absence of a $tau$-transition. We show, using the decomposition method, how congruence formats can be relaxed for weak semantics that are stability-respecting. This relaxation for instance brings the priority operator within the range of the stability-respecting branching bisimulation format. Divergence, which refers to the presence of an infinite sequence of $tau$-transitions, escapes the inductive decomposition method. We circumvent this problem by proving that a congruence format for a stability-respecting weak semantics is also a congruence format for its divergence-preserving counterpart.
We provide elementary algorithms for two preservation theorems for first-order sentences (FO) on the class ^ad of all finite structures of degree at most d: For each FO-sentence that is preserved under extensions (homomorphisms) on ^ad, a ^ad-equival
We prove that rooted divergence-preserving branching bisimilarity is a congruence for the process specification language consisting of nil, action prefix, choice, and the recursion construct.
We study proof techniques for bisimilarity based on unique solution of equations. We draw inspiration from a result by Roscoe in the denotational setting of CSP and for failure semantics, essentially stating that an equation (or a system of equations
In this paper I distinguish two (pre)congruence requirements for semantic equivalences and preorders on processes given as closed terms in a system description language with a recursion construct. A lean congruence preserves equivalence when replacin
In verified generic programming, one cannot exploit the structure of concrete data types but has to rely on well chosen sets of specifications or abstract data types (ADTs). Functors and monads are at the core of many applications of functional progr