ﻻ يوجد ملخص باللغة العربية
The total angular resolution of a straight-line drawing is the minimum angle between two edges of the drawing. It combines two properties contributing to the readability of a drawing: the angular resolution, which is the minimum angle between incident edges, and the crossing resolution, which is the minimum angle between crossing edges. We consider the total angular resolution of a graph, which is the maximum total angular resolution of a straight-line drawing of this graph. We prove that, up to a finite number of well specified exceptions of constant size, the number of edges of a graph with $n$ vertices and a total angular resolution greater than $60^{circ}$ is bounded by $2n-6$. This bound is tight. In addition, we show that deciding whether a graph has total angular resolution at least $60^{circ}$ is NP-hard.
Let $vec{T}_k$ be the transitive tournament on $k$ vertices. We show that every oriented graph on $n=4m$ vertices with minimum total degree $(11/12+o(1))n$ can be partitioned into vertex disjoint $vec{T}_4$s, and this bound is asymptotically tight. W
We provide a comprehensive study of a natural geometric optimization problem motivated by questions in the context of satellite communication and astrophysics. In the problem Minimum Scan Cover with Angular Costs (MSC), we are given a graph $G$ that
An edge guard set of a plane graph $G$ is a subset $Gamma$ of edges of $G$ such that each face of $G$ is incident to an endpoint of an edge in $Gamma$. Such a set is said to guard $G$. We improve the known upper bounds on the number of edges required
Total Generalized Variation (TGV) has recently been proven certainly successful in image processing for preserving sharp features as well as smooth transition variations. However, none of the existing works aims at numerically calculating TGV over tr
We study biplane graphs drawn on a finite planar point set $S$ in general position. This is the family of geometric graphs whose vertex set is $S$ and can be decomposed into two plane graphs. We show that two maximal biplane graphs---in the sense tha