ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized rules for coherence transfer from local to global scale

213   0   0.0 ( 0 )
 نشر من قبل Moses Fayngold
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Moses Fayngold




اسأل ChatGPT حول البحث

Known experiments with the path entangled photon pairs are considered here under more general conditions widely broadening the domain of used bases. Starting from symmetric beam splitters and equally weighted superposition in the initial setup, we allow arbitrary beam splitters and in addition insert the new elements: absorptive plates. The first innovation allows one to vary the amplitudes of local interferences. The second one enables the experimenter to monitor the nonlocal superposition amplitudes, thus varying the entanglement strength from maximal to zero. The generalized scheme reveals an interesting effect: the local coherence observed for independent photons disappears already at infinitesimally weak entanglement between them. Mathematically, local coherence turns out to be a discontinuous function of entanglement strength. The same features are unveiled for a quite different system, spin entangled fermion pair. We can thus conjecture a general rule of total mutual intolerance between local coherence and entanglement: any local coherence must vanish completely not only at maximal, but even at arbitrarily weak entanglement between members of studied pair. Altogether, the generalized thought experiment shows that coherence transfer is a complicated phenomenon with common features for various bipartite systems and different types of observables. Key words: Bi-photon, bi-fermion, entanglement, correlations, coherence transfer

قيم البحث

اقرأ أيضاً

We study generalizations of the Hegselmann-Krause (HK) model for opinion dynamics, incorporating features and parameters that are natural components of observed social systems. The first generalization is one where the strength of influence depends o n the distance of the agents opinions. Under this setup, we identify conditions under which the opinions converge in finite time, and provide a qualitative characterization of the equilibrium. We interpret the HK model opinion update rule as a quadratic cost-minimization rule. This enables a second generalization: a family of update rules which possess different equilibrium properties. Subsequently, we investigate models in which a external force can behave strategically to modulate/influence user updates. We consider cases where this external force can introduce additional agents and cases where they can modify the cost structures for other agents. We describe and analyze some strategies through which such modulation may be possible in an order-optimal manner. Our simulations demonstrate that generalized dynamics differ qualitatively and quantitatively from traditional HK dynamics.
Variational quantum algorithms that are used for quantum machine learning rely on the ability to automatically differentiate parametrized quantum circuits with respect to underlying parameters. Here, we propose the rules for differentiating quantum c ircuits (unitaries) with arbitrary generators. Unlike the standard parameter shift rule valid for unitaries generated by operators with spectra limited to at most two unique eigenvalues (represented by involutory and idempotent operators), our approach also works for generators with a generic non-degenerate spectrum. Based on a spectral decomposition, we derive a simple recipe that allows explicit derivative evaluation. The derivative corresponds to the weighted sum of measured expectations for circuits with shifted parameters. The number of function evaluations is equal to the number of unique positive non-zero spectral gaps (eigenvalue differences) for the generator. We apply the approach to relevant examples of two-qubit gates, among others showing that the fSim gate can be differentiated using four measurements. Additionally, we present generalized differentiation rules for the case of Pauli string generators, based on distinct shifts (here named as the triangulation approach), and analyse the variance for derivative measurements in different scenarios. Our work offers a toolbox for the efficient hardware-oriented differentiation needed for circuit optimization and operator-based derivative representation.
The quantum measurement problem can be regarded as the tension between the two alternative dynamics prescribed by quantum mechanics: the unitary evolution of the wave function and the state-update rule (or collapse) at the instant a measurement takes place. The notorious Wigners friend gedankenexperiment constitutes the paradoxical scenario in which different observers (one of whom is observed by the other) describe one and the same interaction differently, one --the Friend-- via state-update and the other --Wigner-- unitarily. This can lead to Wigner and his friend assigning different probabilities to the outcome of the same subsequent measurement. In this paper, we apply the Page-Wootters mechanism (PWM) as a timeless description of Wigners friend-like scenarios. We show that the standard rules to assign two-time conditional probabilities within the PWM need to be modified to deal with the Wigners friend gedankenexperiment. We identify three main definitions of such modified rules to assign two-time conditional probabilities, all of which reduce to standard quantum theory for non-Wigners friend scenarios. However, when applied to the Wigners friend setup each rule assigns different conditional probabilities, potentially resolving the probability-assignment paradox in a different manner. Moreover, one rule imposes strict limits on when a joint probability distribution for the measurement outcomes of Wigner and his Friend is well-defined, which single out those cases where Wigners measurement does not disturb the Friends memory and such a probability has an operational meaning in terms of collectible statistics. Interestingly, the same limits guarantee that said measurement outcomes fulfill the consistency condition of the consistent histories framework.
We investigate theoretically the quantum-coherence properties of the cathodoluminescence (CL) emission produced by a temporally modulated electron beam. Specifically, we consider the quantum-optical correlations of CL from electrons that are previous ly shaped by a laser field. The main prediction here is the presence of phase correlations between the emitted CL field and the electron-modulating laser, even though the emission intensity and spectral profile are independent of the electron state. In addition, the coherence of the CL field extends to harmonics of the laser frequency. Since electron beams can be focused to below one Angstrom, their ability to transfer optical coherence could enable ultra precise excitation, manipulation, and spectroscopy of nanoscale quantum systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا