ﻻ يوجد ملخص باللغة العربية
Reductions of the KP-Whitham system, namely the (2+1)-dimensional hydrodynamic system of five equations that describes the slow modulations of periodic solutions of the Kadomtsev-Petviashvili (KP) equation, are studied. Specifically, the soliton and harmonic wave limits of the KP-Whitham system are considered, which give rise in each case to a four-component (2+1)-dimensional hydrodynamic system. It is shown that a suitable change of dependent variables splits the resulting four-component systems into two parts: (i) a decoupled, independent two-component system comprised of the dispersionless KP equation, (ii) an auxiliary, two-component system coupled to the mean flow equations, which describes either the evolution of a linear wave or a soliton propagating on top of the mean flow. The integrability of both four-component systems is then demonstrated by applying the Haantjes tensor test as well as the method of hydrodynamic reductions. Various exact reductions of these systems are then presented that correspond to concrete physical scenarios.
The present paper is dedicated to integrable models with Mikhailov reduction groups $G_R simeq mathbb{D}_h.$ Their Lax representation allows us to prove, that their solution is equivalent to solving Riemann-Hilbert problems, whose contours depend on
The Laplacian growth (the Hele-Shaw problem) of multi-connected domains in the case of zero surface tension is proven to be equivalent to an integrable systems of Whitham equations known in soliton theory. The Whitham equations describe slowly modula
The equations of Loewner type can be derived in two very different contexts: one of them is complex analysis and the theory of parametric conformal maps and the other one is the theory of integrable systems. In this paper we compare the both approach
A large class of semi-Hamiltonian systems of hydrodynamic type is interpreted as the equations governing families of critical points of functions obeying the classical linear Darboux equations for conjugate nets.The distinguished role of the Euler-Po
We find a class of exact solutions to the Lighthill Whitham Richards Payne (LWRP) traffic flow equations. Using two consecutive lagrangian transformations, a linearization is achieved. Next, depending on the initial density, we either apply (again tw