ﻻ يوجد ملخص باللغة العربية
Given a digraph $D$ with $m $ arcs, a bijection $tau: A(D)rightarrow {1, 2, ldots, m}$ is an antimagic labeling of $D$ if no two vertices in $D$ have the same vertex-sum, where the vertex-sum of a vertex $u $ in $D$ under $tau$ is the sum of labels of all arcs entering $u$ minus the sum of labels of all arcs leaving $u$. We say $(D, tau)$ is an antimagic orientation of a graph $G$ if $D$ is an orientation of $G$ and $tau$ is an antimagic labeling of $D$. Motivated by the conjecture of Hartsfield and Ringel from 1990 on antimagic labelings of graphs, Hefetz, M{u}tze, and Schwartz in 2010 initiated the study of antimagic orientations of graphs, and conjectured that every connected graph admits an antimagic orientation. This conjecture seems hard, and few related results are known. However, it has been verified to be true for regular graphs and biregular bipartite graphs. In this paper, we prove that every connected graph $G$ on $nge9$ vertices with maximum degree at least $n-5$ admits an antimagic orientation.
Given a digraph $D$ with $m$ arcs and a bijection $tau: A(D)rightarrow {1, 2, ldots, m}$, we say $(D, tau)$ is an antimagic orientation of a graph $G$ if $D$ is an orientation of $G$ and no two vertices in $D$ have the same vertex-sum under $tau$, wh
A $labeling$ of a digraph $D$ with $m$ arcs is a bijection from the set of arcs of $D$ to ${1,2,ldots,m}$. A labeling of $D$ is $antimagic$ if no two vertices in $D$ have the same vertex-sum, where the vertex-sum of a vertex $u in V(D)$ for a labelin
Motivated by the conjecture of Hartsfield and Ringel on antimagic labelings of undirected graphs, Hefetz, M{u}tze, and Schwartz initiated the study of antimagic labelings of digraphs in 2010. Very recently, it has been conjectured in [Antimagic orien
Given a simple graph $G$, denote by $Delta(G)$, $delta(G)$, and $chi(G)$ the maximum degree, the minimum degree, and the chromatic index of $G$, respectively. We say $G$ is emph{$Delta$-critical} if $chi(G)=Delta(G)+1$ and $chi(H)le Delta(G)$ for eve
A {em strong $k$-edge-coloring} of a graph $G$ is a mapping from $E(G)$ to ${1,2,ldots,k}$ such that every two adjacent edges or two edges adjacent to the same edge receive distinct colors. The {em strong chromatic index} $chi_s(G)$ of a graph $G$ is