ترغب بنشر مسار تعليمي؟ اضغط هنا

Antimagic orientations of graphs with large maximum degree

102   0   0.0 ( 0 )
 نشر من قبل Zi-Xia Song
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a digraph $D$ with $m $ arcs, a bijection $tau: A(D)rightarrow {1, 2, ldots, m}$ is an antimagic labeling of $D$ if no two vertices in $D$ have the same vertex-sum, where the vertex-sum of a vertex $u $ in $D$ under $tau$ is the sum of labels of all arcs entering $u$ minus the sum of labels of all arcs leaving $u$. We say $(D, tau)$ is an antimagic orientation of a graph $G$ if $D$ is an orientation of $G$ and $tau$ is an antimagic labeling of $D$. Motivated by the conjecture of Hartsfield and Ringel from 1990 on antimagic labelings of graphs, Hefetz, M{u}tze, and Schwartz in 2010 initiated the study of antimagic orientations of graphs, and conjectured that every connected graph admits an antimagic orientation. This conjecture seems hard, and few related results are known. However, it has been verified to be true for regular graphs and biregular bipartite graphs. In this paper, we prove that every connected graph $G$ on $nge9$ vertices with maximum degree at least $n-5$ admits an antimagic orientation.

قيم البحث

اقرأ أيضاً

Given a digraph $D$ with $m$ arcs and a bijection $tau: A(D)rightarrow {1, 2, ldots, m}$, we say $(D, tau)$ is an antimagic orientation of a graph $G$ if $D$ is an orientation of $G$ and no two vertices in $D$ have the same vertex-sum under $tau$, wh ere the vertex-sum of a vertex $u$ in $D$ under $tau$ is the sum of labels of all arcs entering $u$ minus the sum of labels of all arcs leaving $u$. Hefetz, M{u}tze, and Schwartz in 2010 initiated the study of antimagic orientations of graphs, and conjectured that every connected graph admits an antimagic orientation. This conjecture seems hard, and few related results are known. However, it has been verified to be true for regular graphs, biregular bipartite graphs, and graphs with large maximum degree. In this paper, we establish more evidence for the aforementioned conjecture by studying antimagic orientations of graphs $G$ with independence number at least $|V(G)|/2$ or at most four. We obtain several results. The method we develop in this paper may shed some light on attacking the aforementioned conjecture.
278 - Chen Song , Rong-Xia Hao 2018
A $labeling$ of a digraph $D$ with $m$ arcs is a bijection from the set of arcs of $D$ to ${1,2,ldots,m}$. A labeling of $D$ is $antimagic$ if no two vertices in $D$ have the same vertex-sum, where the vertex-sum of a vertex $u in V(D)$ for a labelin g is the sum of labels of all arcs entering $u$ minus the sum of labels of all arcs leaving $u$. An antimagic orientation $D$ of a graph $G$ is $antimagic$ if $D$ has an antimagic labeling. Hefetz, M$ddot{u}$tze and Schwartz in [J. Graph Theory 64(2010)219-232] raised the question: Does every graph admits an antimagic orientation? It had been proved that for any integer $d$, every 2$d$-regular graph with at most two odd components has an antimagic orientation. In this paper, we consider the 2$d$-regular graph with many odd components. We show that every 2$d$-regular graph with any odd components has an antimagic orientation provide each odd component with enough order.
115 - Donglei Yang 2018
Motivated by the conjecture of Hartsfield and Ringel on antimagic labelings of undirected graphs, Hefetz, M{u}tze, and Schwartz initiated the study of antimagic labelings of digraphs in 2010. Very recently, it has been conjectured in [Antimagic orien tation of even regular graphs, J. Graph Theory, 90 (2019), 46-53.] that every graph admits an antimagtic orientation, which is a strengthening of an earlier conjecture of Hefetz, M{u}tze and Schwartz. In this paper, we prove that every $2d$-regular graph (not necessarily connected) admits an antimagic orientation, where $dge2$. Together with known results, our main result implies that the above-mentioned conjecture is true for all regular graphs.
Given a simple graph $G$, denote by $Delta(G)$, $delta(G)$, and $chi(G)$ the maximum degree, the minimum degree, and the chromatic index of $G$, respectively. We say $G$ is emph{$Delta$-critical} if $chi(G)=Delta(G)+1$ and $chi(H)le Delta(G)$ for eve ry proper subgraph $H$ of $G$; and $G$ is emph{overfull} if $|E(G)|>Delta lfloor |V(G)|/2 rfloor$. Since a maximum matching in $G$ can have size at most $lfloor |V(G)|/2 rfloor$, it follows that $chi(G) = Delta(G) +1$ if $G$ is overfull. Conversely, let $G$ be a $Delta$-critical graph. The well known overfull conjecture of Chetwynd and Hilton asserts that $G$ is overfull provided $Delta(G) > |V(G)|/3$. In this paper, we show that any $Delta$-critical graph $G$ is overfull if $Delta(G) - 7delta(G)/4ge(3|V(G)|-17)/4$.
A {em strong $k$-edge-coloring} of a graph $G$ is a mapping from $E(G)$ to ${1,2,ldots,k}$ such that every two adjacent edges or two edges adjacent to the same edge receive distinct colors. The {em strong chromatic index} $chi_s(G)$ of a graph $G$ is the smallest integer $k$ such that $G$ admits a strong $k$-edge-coloring. We give bounds on $chi_s(G)$ in terms of the maximum degree $Delta(G)$ of a graph $G$. when $G$ is sparse, namely, when $G$ is $2$-degenerate or when the maximum average degree ${rm Mad}(G)$ is small. We prove that the strong chromatic index of each $2$-degenerate graph $G$ is at most $5Delta(G) +1$. Furthermore, we show that for a graph $G$, if ${rm Mad}(G)< 8/3$ and $Delta(G)geq 9$, then $chi_s(G)leq 3Delta(G) -3$ (the bound $3Delta(G) -3$ is sharp) and if ${rm Mad}(G)<3$ and $Delta(G)geq 7$, then $chi_s(G)leq 3Delta(G)$ (the restriction ${rm Mad}(G)<3$ is sharp).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا