ﻻ يوجد ملخص باللغة العربية
Describing partially-condensed Bose gases poses a long-standing theoretical challenge. We present exact stochastic Ehrenfest relations for the stochastic projected Gross-Pitaevskii equation, including both number and energy damping mechanisms, and all projector terms that arise from the energy cutoff separating system from reservoir. We test the theory by applying it to the centre of mass fluctuations of a harmonically trapped prolate system, finding close agreement between c-field simulations and analytical results. The formalism lays the foundation to analytically explore experimentally accessible hot Bose-Einstein condensates.
Extending the understanding of Bose-Einstein condensate (BEC) physics to new geometries and topologies has a long and varied history in ultracold atomic physics. One such new geometry is that of a bubble, where a condensate would be confined to the s
This review explores the dynamics and the low-energy excitation spectra of Bose-Einstein condensates (BECs) of interacting bosons in external potential traps putting particular emphasis on the emerging many-body effects beyond mean-field descriptions
An atomic Bose-Einstein condensate (BEC) is often described as a macroscopic object which can be approximated by a coherent state. This, on the surface, would appear to indicate that its behavior should be close to being classical. In this paper, we
The miscibility of two interacting quantum systems is an important testing ground for the understanding of complex quantum systems. Two-component Bose-Einstein condensates enable the investigation of this scenario in a particularly well controlled se
We study the changes in the spatial distribution of vortices in a rotating Bose-Einstein condensate due to an increasing anisotropy of the trapping potential. Once the rotational symmetry is broken, we find that the vortex system undergoes a rich var