ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of Hot Bose-Einstein Condensates: stochastic Ehrenfest relations for number and energy damping

343   0   0.0 ( 0 )
 نشر من قبل Ashton Bradley
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Describing partially-condensed Bose gases poses a long-standing theoretical challenge. We present exact stochastic Ehrenfest relations for the stochastic projected Gross-Pitaevskii equation, including both number and energy damping mechanisms, and all projector terms that arise from the energy cutoff separating system from reservoir. We test the theory by applying it to the centre of mass fluctuations of a harmonically trapped prolate system, finding close agreement between c-field simulations and analytical results. The formalism lays the foundation to analytically explore experimentally accessible hot Bose-Einstein condensates.



قيم البحث

اقرأ أيضاً

Extending the understanding of Bose-Einstein condensate (BEC) physics to new geometries and topologies has a long and varied history in ultracold atomic physics. One such new geometry is that of a bubble, where a condensate would be confined to the s urface of an ellipsoidal shell. Study of this geometry would give insight into new collective modes, self-interference effects, topology-dependent vortex behavior, dimensionality crossovers from thick to thin shells, and the properties of condensates pushed into the ultradilute limit. Here we discuss a proposal to implement a realistic experimental framework for generating shell-geometry BEC using radiofrequency dressing of magnetically-trapped samples. Such a tantalizing state of matter is inaccessible terrestrially due to the distorting effect of gravity on experimentally-feasible shell potentials. The debut of an orbital BEC machine (NASA Cold Atom Laboratory, aboard the International Space Station) has enabled the operation of quantum-gas experiments in a regime of perpetual freefall, and thus has permitted the planning of microgravity shell-geometry BEC experiments. We discuss specific experimental configurations, applicable inhomogeneities and other experimental challenges, and outline potential experiments.
This review explores the dynamics and the low-energy excitation spectra of Bose-Einstein condensates (BECs) of interacting bosons in external potential traps putting particular emphasis on the emerging many-body effects beyond mean-field descriptions . To do so, methods have to be used that, in principle, can provide numerically exact results for both the dynamics and the excitation spectra in a systematic manner. Numerically exact results for the dynamics are presented employing the well-established multicongurational time-dependent Hartree for bosons (MCTDHB) method. The respective excitation spectra are calculated utilizing the more recently introduced linear-response theory atop it (LR-MCTDHB). The latter theory gives rise to an, in general, non-hermitian eigenvalue problem. The theory and its newly developed implementation are described in detail and benchmarked towards the exactly-solvable harmonic-interaction model. Several applications to BECs in one- and two-dimensional potential traps are discussed. With respect to dynamics, it is shown that both the out-of-equilibrium tunneling dynamics and the dynamics of trapped vortices are of many-body nature. Furthermore, many-body effects in the excitation spectra are presented for BECs in different trap geometries. It is demonstrated that even for essentially-condensed systems, the spectrum of the lowest-in-energy excitations computed at the many-body level can differ substantially from the standard mean-field description. In general, it is shown that bosons carrying angular momentum are more sensitive to many-body effects than bosons without. These effects are present in both the dynamics and the excitation spectrum.
158 - S. Choi , B. Sundaram 2009
An atomic Bose-Einstein condensate (BEC) is often described as a macroscopic object which can be approximated by a coherent state. This, on the surface, would appear to indicate that its behavior should be close to being classical. In this paper, we clarify the extent of how classical a BEC is by exploring the semiclassical equations for BECs under the mean field Gaussian approximation. Such equations describe the dynamics of a condensate in the classical limit in terms of the variables < x > and < p > as well as their respective variances. We compare the semiclassical solution with the full quantum solution based on the Gross-Pitaevskii Equation (GPE) and find that the interatomic interactions which generate nonlinearity make the system less classical. On the other hand, many qualitative features are captured by the semiclassical equations, and the equations to be solved are far less computationally intensive than solving the GPE which make them ideal for providing quick diagnostics, and for obtaining new intuitive insight.
The miscibility of two interacting quantum systems is an important testing ground for the understanding of complex quantum systems. Two-component Bose-Einstein condensates enable the investigation of this scenario in a particularly well controlled se tting. In a homogeneous system, the transition between mixed and separated phases is fully characterised by a `miscibility parameter, based on the ratio of intra- to inter-species interaction strengths. Here we show, however, that this parameter is no longer the optimal one for trapped gases, for which the location of the phase boundary depends critically on atom numbers. We demonstrate how monitoring of damping rates and frequencies of dipole oscillations enables the experimental mapping of the phase diagram by numerical implementation of a fully self-consistent finite-temperature kinetic theory for binary condensates. The change in damping rate is explained in terms of surface oscillation in the immiscible regime, and counterflow instability in the miscible regime, with collisions becoming only important in the long time evolution.
We study the changes in the spatial distribution of vortices in a rotating Bose-Einstein condensate due to an increasing anisotropy of the trapping potential. Once the rotational symmetry is broken, we find that the vortex system undergoes a rich var iety of structural changes, including the formation of zig-zag and linear configurations. These spatial re-arrangements are well signaled by the change in the behavior of the vortex-pattern eigenmodes against the anisotropy parameter. The existence of such structural changes opens up possibilities for the coherent exploitation of effective many-body systems based on vortex patterns.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا