ترغب بنشر مسار تعليمي؟ اضغط هنا

Sky Brightness Measurements and Ways to Mitigate Light Pollution in Kirksville, Missouri

55   0   0.0 ( 0 )
 نشر من قبل Vayujeet Gokhale
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the level of light pollution in and around Kirksville, Missouri and at Anderson Mesa near Flagstaff, Arizona by measuring the sky brightness using Unihedron sky quality meters. We report that, on average, the Anderson Mesa site is approximately 1.3 mag/arcsec$^2$ darker than the Truman State Observatory site, and approximately 2.5 mag/arcsec$^2$ darker than the roof of the science building at Truman State University in Kirksville. We also show that at the Truman observatory site, the North and East skies have significantly high sky brightness (by about 1 mag/arcsec$^2$) as compared to the South and West skies. Similarly, the sky brightness varies significantly with azimuth on the top of the science building at Truman State -- the west direction being as much as 3 mag/arcsec$^2$ brighter than the south direction. The sky brightness at Anderson Mesa is much more uniform, varying by less than 0.4 mag/arcsec$^2$ at most along the azimuthal direction. Finally, we describe the steps we are taking in the Kirksville area to mitigate the nuisance of light pollution by installing fully shielded outdoor light fixtures and improved outdoor lights on Truman State Universitys campus.

قيم البحث

اقرأ أيضاً

Light pollution is a worldwide phenomenon whose consequences for the natural environment and the human health are being intensively studied nowadays. Most published studies address issues related to light pollution inland. Coastal waters, however, ar e spaces of high environmental interest, due to their biodiversity richness and their economical significance. The elevated population density in coastal regions is accompanied by correspondingly large emissions of artificial light at night, whose role as an environmental stressor is increasingly being recognized. (...) At the same time, the marine surface environment provides a stage free from obstacles for measuring the dependence of the skyglow on the distance to the light polluting sources, and validating (or rejecting) atmospheric light propagation models. In this work we present a proof-of-concept of a gimbal measurement system that can be used for zenithal skyglow measurements on board both small boats and large vessels under actual navigation conditions. We report the results obtained in the summer of 2016 along two measurement routes in the Mediterranean waters offshore Barcelona, travelling 9 and 31.7 km away from the coast. The atmospheric conditions in both routes were different from the ones assumed for the calculation of recently published models of the anthropogenic sky brightness. They were closer in the first route, whose results approach better the theoretical predictions. The results obtained in the second route, conducted under a clearer atmosphere, showed systematic differences that can be traced back to two expected phenomena, which are a consequence of the smaller aerosol content: the reduction of the anthropogenic sky glow at short distances from the sources, and the slower decay rate of brightness with distance, which gives rise to a relative excess of brightness at large distances from the coastline.
This paper presents optical night sky brightness measurements from the stratosphere using CCD images taken with the Super-pressure Balloon-borne Imaging Telescope (SuperBIT). The data used for estimating the backgrounds were obtained during three com missioning flights in 2016, 2018, and 2019 at altitudes ranging from 28 km to 34 km above sea level. For a valid comparison of the brightness measurements from the stratosphere with measurements from mountain-top ground-based observatories (taken at zenith on the darkest moonless night at high Galactic and high ecliptic latitudes), the stratospheric brightness levels were zodiacal light and diffuse Galactic light subtracted, and the airglow brightness was projected to zenith. The stratospheric brightness was measured around 5.5 hours, 3 hours, and 2 hours before the local sunrise time in 2016, 2018, and 2019 respectively. The $B$, $V$, $R$, and $I$ brightness levels in 2016 were 2.7, 1.0, 1.1, and 0.6 mag arcsec$^{-2}$ darker than the darkest ground-based measurements. The $B$, $V$, and $R$ brightness levels in 2018 were 1.3, 1.0, and 1.3 mag arcsec$^{-2}$ darker than the darkest ground-based measurements. The $U$ and $I$ brightness levels in 2019 were 0.1 mag arcsec$^{-2}$ brighter than the darkest ground-based measurements, whereas the $B$ and $V$ brightness levels were 0.8 and 0.6 mag arcsec$^{-2}$ darker than the darkest ground-based measurements. The lower sky brightness levels, stable photometry, and lower atmospheric absorption make stratospheric observations from a balloon-borne platform a unique tool for astronomy. We plan to continue this work in a future mid-latitude long duration balloon flight with SuperBIT.
The photometric sky quality of Mt. Shatdzhatmaz, the site of Sternberg Astronomical Institute Caucasian Observatory 2.5 m telescope, is characterized here by the statistics of the night-time sky brightness and extinction. The data were obtained as a by-product of atmospheric optical turbulence measurements with the MASS (Multi-Aperture Scintillation Sensor) device conducted in 2007--2013. The factors biasing night-sky brightness measurements are considered and a technique to reduce their impact on the statistics is proposed. The single-band photometric estimations provided by MASS are easy to transform to the standard photometric bands. The median moonless night-sky brightness is 22.1, 21.1, 20.3, and 19.0 mag per square arcsec for the $B$, $V$, $R$, and $I$ spectral bands, respectively. The median extinction coefficients for the same photometric bands are 0.28, 0.17, 0.13, and 0.09 mag. The best atmospheric transparency is observed in winter.
In 2018, Solar Cycle 24 entered into a solar minimum phase. During this period, 11 million zenithal night sky brightness (NSB) data were collected at different dark sites around the planet, including astronomical observatories and natural protected a reas, with identical broadband Telescope Encoder and Sky Sensor photometers (based on the Unihedron Sky Quality Meter TSL237 sensor). A detailed observational review of the multiple effects that contribute to the NSB measurement has been conducted with optimal filters designed to avoid brightening effects by the Sun, the Moon, clouds, and other astronomical sources (the Galaxy and zodiacal light). The natural NSB has been calculated from the percentiles for 44 different photometers by applying these new filters. The pristine night sky was measured to change with an amplitude of 0.1 mag/arcsec$^2$ in all the photometers, which is suggested to be due to NSB variations on scales of up to months and to be compatible with semiannual oscillations. We report the systematic observation of short-time variations in NSB on the vast majority of the nights and find these to be related to airglow events forming above the mesosphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا