ترغب بنشر مسار تعليمي؟ اضغط هنا

Helical phase inflation and its observational constraints

137   0   0.0 ( 0 )
 نشر من قبل Yungui Gong
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a class of helical phase inflation models from the ${mathcal N}=1$ supergravity where the phase component of a complex field acts as an inflaton. This class of models avoids the eta problem in supergravity inflation due to the phase monodromy of the superpotential. We study the inflationary predictions of this class of models in the context of both standard and large extra dimensional brane cosmology, and find that they can easily accommodate the Planck 2018 and BICEP2 constraints. We find that the helical phase inflation has $alpha$-attractors and the attractors depend on one model parameter only.



قيم البحث

اقرأ أيضاً

By incorporating quantum aspects of gravity, Loop Quantum Cosmology (LQC) provides a self-consistent extension of the inflationary scenario, allowing for modifications in the primordial inflationary power spectrum with respect to the standard General Relativity one. We investigate such modifications and explore the constraints imposed by the Cosmic Microwave Background (CMB) Planck Collaboration data on the Warm Inflation (WI) scenario in the LQC context. We obtain useful relations between the dissipative parameter of WI and the bounce scale parameter of LQC. We also find that the number of required e-folds of expansion from the bounce instant till the moment the observable scales crossed the Hubble radius during inflation can be smaller in WI than in CI. In particular, we find that this depends on how large is the dissipation in WI, with the amount of required e-folds decreasing with the increasing of the dissipation value. Furthermore, by performing a Monte Carlo Markov Chain analysis for the considered WI models, we find good agreement of the model with the data. This shows that the WI models studied here can explain the current observations also in the context of LQC.
Recent BICEP2 detection of low-multipole B-mode polarization anisotropy in the cosmic microwave background radiation supports the inflationary universe scenario and suggests a large inflaton field range. The latter feature can be achieved with axion fields in the framework of string theory. We present such a helical model which naturally becomes a model with a single cosine potential, and which in turn reduces to the (quadratic) chaotic inflation model in the super-Planckian limit. The slightly smaller tensor/scalar ratio $r$ of models of this type provides a signature of the periodic nature of an axion potential. We present a simple way to quantify this distinctive feature. As axions are intimately related to strings/vortices and strings are ubiquitous in string theory, we explore the possibility that cosmic strings may be contributing to the B-mode polarization anisotropy observed.
The Friedmann-Robertson-Walker (FRW) cosmology is analyzed with a general potential $rm V(phi)$ in the scalar field inflation scenario. The Bohmian approach (a WKB-like formalism) was employed in order to constraint a generic form of potential to the most suited to drive inflation, from here a family of potentials emerges; in particular we select an exponential potential as the first non trivial case and remains the object of interest of this work. The solution to the Wheeler-DeWitt (WDW) equation is also obtained for the selected potential in this scheme. Using Hamiltons approach and equations of motion for a scalar field $rm phi$ with standard kinetic energy, we find the exact solutions to the complete set of Einstein-Klein-Gordon (EKG) equations without the need of the slow-roll approximation (SR). In order to contrast this model with observational data (Planck 2018 results), the inflationary observables: the tensor-to-scalar ratio and the scalar spectral index are derived in our proper time, and then evaluated under the proper condition such as the number of e-folding corresponds exactly at 50-60 before inflation ends. The employed method exhibits a remarkable simplicity with rather interesting applications in the near future.
77 - Qing Gao , Yungui Gong , Qin Fei 2018
For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio up to the first order by using the method of Bessel function ap proximation. The derived $n_s-r$ results for the constant-roll inflation are also compared with the observations, we find that only one constant-roll inflation is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.
We constrain spatially-flat tilted and nonflat untilted scalar field ($phi$) dynamical dark energy inflation ($phi$CDM) models by using Planck 2015 cosmic microwave background (CMB) anisotropy measurements and recent baryonic acoustic oscillation dis tance observations, Type Ia supernovae apparent magnitude data, Hubble parameter measurements, and growth rate data. We assume an inverse power-law scalar field potential energy density $V(phi)=V_0 phi^{-alpha}$. We find that the combination of the CMB data with the four non-CMB data sets significantly improves parameter constraints and strengthens the evidence for nonflatness in the nonflat untilted $phi$CDM case from $1.8sigma$ for the CMB measurements only to more than $3.1sigma$ for the combined data. In the nonflat untilted $phi$CDM model current observations favor a spatially closed universe with spatial curvature contributing about two-thirds of a percent of the present cosmological energy budget. The flat tilted $phi$CDM model is a 0.4$sigma$ better fit to the data than is the standard flat tilted $Lambda$CDM model: current data allow for the possibility that dark energy is dynamical. The nonflat tilted $phi$CDM model is in better accord with the Dark Energy Survey bounds on the rms amplitude of mass fluctuations now ($sigma_8$) as a function of the nonrelativistic matter density parameter now ($Omega_m$) but it does not provide as good a fit to the larger-multipole Planck 2015 CMB anisotropy data as does the standard flat tilted $Lambda$CDM model. A few cosmological parameter value measurements differ significantly when determined using the tilted flat and the untilted nonflat $phi$CDM models, including the cold dark matter density parameter and the reionization optical depth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا