ﻻ يوجد ملخص باللغة العربية
We consider a class of helical phase inflation models from the ${mathcal N}=1$ supergravity where the phase component of a complex field acts as an inflaton. This class of models avoids the eta problem in supergravity inflation due to the phase monodromy of the superpotential. We study the inflationary predictions of this class of models in the context of both standard and large extra dimensional brane cosmology, and find that they can easily accommodate the Planck 2018 and BICEP2 constraints. We find that the helical phase inflation has $alpha$-attractors and the attractors depend on one model parameter only.
By incorporating quantum aspects of gravity, Loop Quantum Cosmology (LQC) provides a self-consistent extension of the inflationary scenario, allowing for modifications in the primordial inflationary power spectrum with respect to the standard General
Recent BICEP2 detection of low-multipole B-mode polarization anisotropy in the cosmic microwave background radiation supports the inflationary universe scenario and suggests a large inflaton field range. The latter feature can be achieved with axion
The Friedmann-Robertson-Walker (FRW) cosmology is analyzed with a general potential $rm V(phi)$ in the scalar field inflation scenario. The Bohmian approach (a WKB-like formalism) was employed in order to constraint a generic form of potential to the
For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio up to the first order by using the method of Bessel function ap
We constrain spatially-flat tilted and nonflat untilted scalar field ($phi$) dynamical dark energy inflation ($phi$CDM) models by using Planck 2015 cosmic microwave background (CMB) anisotropy measurements and recent baryonic acoustic oscillation dis