ﻻ يوجد ملخص باللغة العربية
PKS 1510-089 is one of the most variable blazars in the third Fermi-LAT source catalog. During 2015, this source has shown four flares identified as flare A, B, C, and D in between three quiescent states Q1, Q2, and Q3. The multi-wavelength data from Fermi-LAT, Swift-XRT/UVOT, OVRO, and SMA observatory are used in our work to model these states. Different flux doubling times have been observed in different energy bands which indicate there could be multiple emission zones. The flux doubling time from the gamma-ray and X-ray light curves are found to be 10.6 hr, 2.5 days, and the average flux doubling time in the optical/UV band is 1 day. It is possible that the gamma-ray and optical/UV emission are produced in the same region whereas X-ray emission is coming from a different region along the jet axis. We have also estimated the discrete correlations functions (DCFs) among the light curves of different energy bands to infer about their emission regions. However, our DCF analysis does not show significant correlation in different energy bands though it shows peaks in some cases at small time lags. We perform a two-zone multi-wavelength time-dependent SED modeling with one emission zone located near the outer edge of the broad line region (BLR) and another further away in the dusty/molecular torus (DT/MT) region to study this high state.
PKS 1510--089 is a bright and active $gamma$-ray source that showed strong and complex $gamma$-ray flares in mid-2015 during which the Major Atmospheric Gamma Imaging Cherenkov telescopes detected variable very high energy (VHE; photon energies $>$10
Context. PKS 1510-089 is one of only a few flat spectrum radio quasars detected in the VHE (very-high-energy, > 100 GeV) gamma-ray band. Aims. We study the broadband spectral and temporal properties of the PKS 1510-089 emission during a high gamma-ra
The flat spectrum radio quasar (FSRQ) PKS 1510-089 (z=0.361) is known for its complex multiwavelength behavior. It has been monitored regularly at very high energy (VHE, $E>100,$GeV) gamma-rays with H.E.S.S. since its discovery in 2009 in order to st
The blazar PKS 1510-089 was the first of the flat spectrum radio quasar type, which had been detected simultaneously by a ground based Cherenkov telescope (H.E.S.S.) and the LAT instrument on board the Fermi satellite. Given the strong broad line reg
We investigate the radio and gamma-ray variability of the flat spectrum radio quasar PKS 1510-089 in the time range between 2010 November and 2012 January. In this period the source showed an intense activity, with two major gamma-ray flares detected