ترغب بنشر مسار تعليمي؟ اضغط هنا

Jets, Bubbles, and Heat Pumps in Galaxy Clusters

90   0   0.0 ( 0 )
 نشر من قبل Yi-Hao Chen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yi-Hao Chen -




اسأل ChatGPT حول البحث

Feedback from AGN jets has been proposed to counteract the catastrophic cooling in many galaxy clusters. However, it is still unclear which physical processes are acting to couple the energy from the bi-directional jets to the ICM. We study the long-term evolution of rising bubbles that were inflated by AGN jets using MHD simulations. In the wake of the rising bubbles, a significant amount of low-entropy gas is brought into contact with the hot cluster gas. We assess the energy budget of the uplifted gas and find it comparable to the total energy injected by the jets. Although our simulation does not include explicit thermal conduction, we find that, for reasonable assumptions about the conduction coefficient, the rate is fast enough that much of the uplifted gas may be thermalized before it sinks back to the core. Thus, we propose that the AGN can act like a heat pump to move low-entropy gas from the cluster core to the heat reservoir and will be able to heat the inner cluster more efficiently than would be possible by direct energy transfer from jets alone. We show that the maximum efficiency of this mechanism, i.e. the ratio between the conductive thermal energy and the work needed to lift the gas, $xi_{mathrm{max}}$ can exceed 100 per cent. While $xi$ < $xi_{mathrm{max}}$ in realistic scenarios, AGN-induced thermal conduction has the potential to significantly increase the efficiency with which AGN can heat cool-core clusters and transform the bursty AGN activities into a smoother and enduring heating process.



قيم البحث

اقرأ أيضاً

We report the discovery of shocked molecular and ionized gas resulting from jet-driven feedback in the compact radio galaxy 4C 31.04 using near-IR imaging spectroscopy. 4C 31.04 is a $sim 100$ pc double-lobed Compact Steep Spectrum source believed to be a very young AGN. It is hosted by a giant elliptical with a $sim 10^{9}~rm M_odot$ multi-phase gaseous circumnuclear disc. We used high spatial resolution, adaptive optics-assisted $H$- and $K$-band integral field Gemini/NIFS observations to probe (1) the warm ($sim 10^3~rm K$) molecular gas phase, traced by ro-vibrational transitions of $rm H_2$, and (2), the warm ionized medium, traced by the [Fe II]$_{1.644~rm mu m}$ line. The [Fe II] emission traces shocked gas ejected from the disc plane by a jet-blown bubble $300-400~rm pc$ in diameter, whilst the $rm H_2$ emission traces shock-excited molecular gas in the interior $sim 1~rm kpc$ of the circumnuclear disc. Hydrodynamical modelling shows that the apparent discrepancy between the extent of the shocked gas and the radio emission can occur when the brightest regions of the synchrotron-emitting plasma are temporarily halted by dense clumps, whilst less bright plasma can percolate through the porous ISM and form an energy-driven bubble that expands freely out of the disc plane. This bubble is filled with low surface-brightness plasma not visible in existing VLBI observations of 4C 31.04 due to insufficient sensitivity. Additional radial flows of jet plasma may percolate to $sim rm kpc$ radii in the circumnuclear disc, driving shocks and accelerating clouds of gas, giving rise to the $rm H_2$ emission.
We investigate whether the swirling cold front in the core of the Perseus Cluster of galaxies has affected the outer buoyant bubbles that originated from jets from the Active Galactic Nucleus in the central galaxy NGC1275. The inner bubbles and the O uter Southern bubble lie along a North-South axis through the nucleus, whereas the Outer Northern bubble appears rotated about 45 deg from that axis. Detailed numerical simulations of the interaction indicates that the Outer Northern bubble may have been pushed clockwise accounting for its current location. Given the common occurrence of cold fronts in cool core clusters, we raise the possibility that the lack of many clear outer bubbles in such environments may be due to their disruption by cold fronts.
Several galaxy clusters are known to present multiple and misaligned pairs of cavities seen in X-rays, as well as twisted kiloparsec-scale jets at radio wavelengths. It suggests that the AGN precessing jets play a role in the formation of the misalig ned bubbles. Also, X-ray spectra reveal that typically these systems are also able to supress cooling flows, predicted theoretically. The absence of cooling flows in galaxy clusters has been a mistery for many years since numerical simulations and analytical studies suggest that AGN jets are highly energetic, but are unable to redistribute it at all directions. We performed 3D hydrodynamical simulations of the interaction between a precessing AGN jet and the warm intracluster medium plasma, which dynamics is coupled to a NFW dark matter gravitational potential. Radiative cooling has been taken into account and the cooling flow problem was studied. We found that precession is responsible for multiple pairs of bubbles, as observed. The misaligned bubbles rise up to scales of tens of kiloparsecs, where the thermal energy released by the jets are redistributed. After $sim 150$ Myrs, the temperature of the gas within the cavities is kept of order of $sim 10^7$ K, while the denser plasma of the intracluster medium at the central regions reaches $T sim 10^5$ K. The existence of multiple bubbles, at diferent directions, result in an integrated temperature along the line of sight much larger than the simulations of non-precessing jets. This result is in agreement with the observations. The simulations reveal that the cooling flows cessed $sim 50 - 70$ Myr after the AGN jets are started.
The Perseus galaxy cluster is known to present multiple and misaligned pairs of cavities seen in X-rays, as well as twisted kiloparsec-scale jets at radio wavelengths; both morphologies suggest that the AGN jet is subject to precession. In this work we performed 3D hydrodynamical simulations of the interaction between a precessing AGN jet and the warm intracluster medium plasma, which dynamics is coupled to a NFW dark matter gravitational potential. The AGN jet inflates cavities that become buoyantly unstable and rise up out of the cluster core. We found that under certain circumstances precession can originate multiple pairs of bubbles. For the physical conditions in the Perseus cluster, multiple pairs of bubbles are obtained for a jet precession opening angle > 40 degrees acting for at least three precession periods, reproducing well both radio and X-ray maps. Based on such conditions, assuming that the Bardeen-Peterson effect is dominant, we studied the evolution of the precession opening angle of this system. We were able to constrain the ratio between the accretion disc and black hole angular momenta as 0.7 - 1.4. We were also able to constrain the present precession angle to 30 - 40 degrees, as well as the approximate age of the inflated bubbles to 100 - 150 Myrs.
We present XMM-Newton/EPIC observations of six merging galaxy clusters and study the distributions of their temperature, iron (Fe) abundance and pseudo-entropy along the merging axis. For the first time, we focus simultaneously, and in a comprehensiv e way, on the chemical and thermodynamic properties of the freshly collided intracluster medium (ICM). The Fe distribution of these clusters along the merging axis is found to be in good agreement with the azimuthally-averaged Fe abundance profile in typical non-cool-core clusters out to $r_{500}$. In addition to showing a moderate central abundance peak, though less pronounced than in relaxed systems, the Fe abundance flattens at large radii towards $sim$0.2-0.3 $Z_odot$. Although this shallow metal distribution is in line with the idea that disturbed, non-cool-core clusters originate from the merging of relaxed, cool-core clusters, we find that in some cases, remnants of metal-rich and low entropy cool cores can persist after major mergers. While we obtain a mild anti-correlation between the Fe abundance and the pseudo-entropy in the (lower entropy, $K$ = 200-500 keV cm$^2$) inner regions, no clear correlation is found at (higher entropy, $K$ = 500-2300 keV cm$^2$) outer radii. The apparent spatial abundance uniformity that we find at large radii is difficult to explain through an efficient mixing of freshly injected metals, particularly in systems for which the time since the merger is short. Instead, our results provide important additional evidence in favour of the early enrichment scenario - in which the bulk of the metals are released outside galaxies at $z$ > 2-3 - and extend it from cool-core and (moderate) non-cool-core clusters to a few of the most disturbed merging clusters as well. These results constitute a first step towards a deeper understanding of the chemical history of merging clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا