ﻻ يوجد ملخص باللغة العربية
High temperature thermal transport in insulators has been conjectured to be subject to a Planckian bound on the transport lifetime $tau gtrsim tau_text{Pl} equiv hbar/(k_B T)$, despite phonon dynamics being entirely classical at these temperatures. We argue that this Planckian bound is due to a quantum mechanical bound on the sound velocity: $v_s < v_M$. The `melting velocity $v_M$ is defined in terms of the melting temperature of the crystal, the interatomic spacing and Plancks constant. We show that for several classes of insulating crystals, both simple and complex, $tau/tau_text{Pl} approx v_M/v_s$ at high temperatures. The velocity bound therefore implies the Planckian bound.
It has been known for decades that thermal conductivity of insulating crystals becomes proportional to the inverse of temperature when the latter is comparable to or higher than the Debye temperature. This behavior has been understood as resulting fr
We study current-induced step bunching and wandering instabilities with subsequent pattern formations on vicinal surfaces. A novel two-region diffusion model is developed, where we assume that there are different diffusion rates on terraces and in a
We have used the indium/copper surface alloy to study the dynamics of surface vacancies on the Cu(001) surface. Individual indium atoms that are embedded within the first layer of the crystal, are used as probes to detect the rapid diffusion of surfa
It has recently been conjectured that the transport relaxation rate in metals is bounded above by the temperature of the system. In this work, we discuss the transport phenomenology of overdoped electron-doped cuprates, which we show constitute an un
Cuprous oxide (Cu2O) films from 25 nm to 1500 nm were electrodeposited on n-Si(100) and Ni/n-Si(100) substrates from aqueous solution at room temperature. X-ray diffraction and transmission electron microscopy imaging show that the Cu2O structure and