ﻻ يوجد ملخص باللغة العربية
There have been vigorous research attempts to test various modified gravity theories by usingphysics of the cosmic microwave background (CMB). Meanwhile, symmetry breaking such as Higgsmechanism is one of the most important phenomena in physics but there have been not so muchresearches to make them contact with cosmological observations. In this article, with the CMBpower spectra we try to distinguish two different scenarios of spontaneous symmetry breaking inprimordial era of the universe. The first model is based on a broken symmetric theory of gravity,which was suggested by A. Zee in 1979. The second model is an application of Palatini formalismto the first model. Perturbation equations are computed and they show differences originated fromthe property of symmetry. Furthermore, it turns out that two models have different features ofCMB power spectra with the same potential scale. This fact enables us to verify distinct kinds ofprimordial symmetry breaking with CMB physics.
This is a summary of presentations delivered at the OC1 parallel session Primordial Gravitational Waves and the CMB of the 12th Marcel Grossmann meeting in Paris, July 2009. The reports and discussions demonstrated significant progress that was achie
Understanding the interaction of primordial gravitational waves (GWs) with the Cosmic Microwave Background (CMB) plasma is important for observational cosmology. In this article, we provide an analysis of an effect apparently overlooked as yet. We co
We have studied the angular fluctuations in the speed of light with respect to the apex of the dipole of Cosmic Microwave Background (CMB) radiation using the experimental data obtained with GRAAL facility, located at the European Synchrotron Radiati
The authority of J. A. Wheeler in many areas of gravitational physics is immense, and there is a connection with the study of relic gravitational waves as well. I begin with a brief description of Wheelers influence on this study. One part of the pap
A strong variable gravitational field of the very early Universe inevitably generates relic gravitational waves by amplifying their zero-point quantum oscillations. We begin our discussion by contrasting the concepts of relic gravitational waves and