ﻻ يوجد ملخص باللغة العربية
The pseudopotential multiphase lattice Boltzmann (LB) model is a very popular model in the LB community for simulating multiphase flows. When the multiphase modeling involves a solid boundary, a numerical scheme is required to simulate the contact angle at the solid boundary. In this work, we aim at investigating the implementation of contact angles in the pseudopotential LB simulations with curved boundaries. In the pseudopotential LB model, the contact angle is usually realized by employing a solid-fluid interaction or specifying a constant virtual wall density. However, it is shown that the solid-fluid interaction scheme yields very large spurious currents in the simulations involving curved boundaries, while the virtual-density scheme produces an unphysical thick mass-transfer layer near the solid boundary although it gives much smaller spurious currents. We also extend the geometric-formulation scheme in the phase-field method to the pseudopotential LB model. Nevertheless, in comparison with the solid-fluid interaction scheme and the virtual-density scheme, the geometric-formulation scheme is relatively difficult to implement for curved boundaries and cannot be directly applied to three-dimensional space. By analyzing the features of these three schemes, we propose an improved virtual-density scheme to implement contact angles in the pseudopotential LB simulations with curved boundaries, which does not suffer from a thick mass-transfer layer near the solid boundary and retains the advantages of the original virtual-density scheme, i.e., simplicity, easiness for implementation, and low spurious currents.
We show that, when a single relaxation time lattice Boltzmann algorithm is used to solve the hydrodynamic equations of a binary fluid for which the two components have different viscosities, strong spurious velocities in the steady state lead to inco
Non-Newtonian fluid flows, especially in three dimensions (3D), arise in numerous settings of interest to physics. Prior studies using the lattice Boltzmann method (LBM) of such flows have so far been limited to mainly to two dimensions and used less
The lattice Boltzmann (LB) method has gained much success in a variety of fields involving fluid flow and/or heat transfer. In this method, the bounce-back scheme is a popular boundary scheme for treating nonslip boundaries. However, this scheme lead
In this brief report, a thermal lattice-Boltzmann (LB) model is presented for axisymmetric thermal flows in the incompressible limit. The model is based on the double-distribution-function LB method, which has attracted much attention since its emerg
We present a novel method for fluid structure interaction (FSI) simulations where an original 2nd-order curved space lattice Boltzmann fluid solver (LBM) is coupled to a finite element method (FEM) for thin shells. The LBM can work independently on a