ﻻ يوجد ملخص باللغة العربية
We study the effect of superfluidity on the tidal response of a neutron star in a general relativistic framework. In this work, we take a dual-layer approach where the superfluid matter is confined in the core of the star. Then, the superfluid core is encapsulated with an envelope of ordinary matter fluid which acts effectively as the low-density crustal region of the star. In the core, the matter content is described by a two-fluid model where only the neutrons are taken as superfluid and the other fluid consists of protons and electrons making it charge neutral. We calculate the values of various tidal love numbers of a neutron star and discuss how they are affected due to the presence of entrainment between the two fluids in the core. We also emphasize that more than one tidal parameter is necessary to probe superfluidity with the gravitational wave from the binary inspiral.
We investigate the tidal deformability of a superfluid neutron star. We calculate the equilibrium structure in the general relativistic two-fluid formalism with entrainment effect where we take neutron superfluid as one fluid and the other fluid is c
Constraints set on key parameters of the nuclear matter equation of state (EoS) by the values of the tidal deformability, inferred from GW170817, are examined by using a diverse set of relativistic and non-relativistic mean field models. These models
The discovery of gravitational waves (GW) by Advanced LIGO has ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for LIGO, of which neutron star-black hole (NSBH) binaries form an important su
In the late inspiral phase, gravitational waves from binary neutron star mergers carry the imprint of the equation of state due to the tidally deformed structure of the components. If the stars contain solid crusts, then their shear modulus can affec
The combined observation of gravitational and electromagnetic waves from the coalescence of two neutron stars marks the beginning of multi-messenger astronomy with gravitational waves (GWs). The development of accurate gravitational waveform models i