ترغب بنشر مسار تعليمي؟ اضغط هنا

Solving the problem of simultaneous diagonalization of complex symmetric matrices via congruence

107   0   0.0 ( 0 )
 نشر من قبل Miguel D. Bustamante
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a solution to the problem of simultaneous $diagonalization$ $via$ $congruence$ of a given set of $m$ complex symmetric $ntimes n$ matrices ${A_{1},ldots,A_{m}}$, by showing that it can be reduced to a possibly lower-dimensional problem where the question is rephrased in terms of the classical problem of simultaneous $diagonalization$ $via$ $similarity$ of a new related set of matrices. We provide a procedure to determine in a finite number of steps whether or not a set of matrices is simultaneously diagonalizable by congruence. This solves a long standing problem in the complex case.



قيم البحث

اقرأ أيضاً

A symmetric tensor may be regarded as a partially symmetric tensor in several different ways. These produce different notions of rank for the symmetric tensor which are related by chains of inequalities. By exploiting algebraic tools such as apolarit y theory, we show how the study of the simultaneous symmetric rank of partial derivatives of the homogeneous polynomial associated to the symmetric tensor can be used to prove equalities among different partially symmetric ranks. This approach aims to understand to what extent the symmetries of a tensor affect its rank. We apply this to the special cases of binary forms, ternary and quaternary cubics, monomials, and elementary symmetric polynomials.
Let $M=(m_{ij})$ be a symmetric matrix of order $n$ whose elements lie in an arbitrary field $mathbb{F}$, and let $G$ be the graph with vertex set ${1,ldots,n}$ such that distinct vertices $i$ and $j$ are adjacent if and only if $m_{ij} eq 0$. We in troduce a dynamic programming algorithm that finds a diagonal matrix that is congruent to $M$. If $G$ is given with a tree decomposition $mathcal{T}$ of width $k$, then this can be done in time $O(k|mathcal{T}| + k^2 n)$, where $|mathcal{T}|$ denotes the number of nodes in $mathcal{T}$. Among other things, this allows one to compute the determinant, the rank and the inertia of a symmetric matrix in time $O(k|mathcal{T}| + k^2 n)$.
631 - Marco Congedo 2015
We explore the connection between two problems that have arisen independently in the signal processing and related fields: the estimation of the geometric mean of a set of symmetric positive definite (SPD) matrices and their approximate joint diagona lization (AJD). Today there is a considerable interest in estimating the geometric mean of a SPD matrix set in the manifold of SPD matrices endowed with the Fisher information metric. The resulting mean has several important invariance properties and has proven very useful in diverse engineering applications such as biomedical and image data processing. While for two SPD matrices the mean has an algebraic closed form solution, for a set of more than two SPD matrices it can only be estimated by iterative algorithms. However, none of the existing iterative algorithms feature at the same time fast convergence, low computational complexity per iteration and guarantee of convergence. For this reason, recently other definitions of geometric mean based on symmetric divergence measures, such as the Bhattacharyya divergence, have been considered. The resulting means, although possibly useful in practice, do not satisfy all desirable invariance properties. In this paper we consider geometric means of co-variance matrices estimated on high-dimensional time-series, assuming that the data is generated according to an instantaneous mixing model, which is very common in signal processing. We show that in these circumstances we can approximate the Fisher information geometric mean by employing an efficient AJD algorithm. Our approximation is in general much closer to the Fisher information geometric mean as compared to its competitors and verifies many invariance properties. Furthermore, convergence is guaranteed, the computational complexity is low and the convergence rate is quadratic. The accuracy of this new geometric mean approximation is demonstrated by means of simulations.
Despite significant advances on distributed continuous-time optimization of multi-agent networks, there is still lack of an efficient algorithm to achieve the goal of distributed optimization at a pre-specified time. Herein, we design a specified-tim e distributed optimization algorithm for connected agents with directed topologies to collectively minimize the sum of individual objective functions subject to an equality constraint. With the designed algorithm, the settling time of distributed optimization can be exactly predefined. The specified selection of such a settling time is independent of not only the initial conditions of agents, but also the algorithm parameters and the communication topologies. Furthermore, the proposed algorithm can realize specified-time optimization by exchanging information among neighbours only at discrete sampling instants and thus reduces the communication burden. In addition, the equality constraint is always satisfied during the whole process, which makes the proposed algorithm applicable to online solving distributed optimization problems such as economic dispatch. For the special case of undirected communication topologies, a reduced-order algorithm is also designed. Finally, the effectiveness of the theoretical analysis is justified by numerical simulations.
In this paper a geometric method based on Grassmann manifolds and matrix Riccati equations to make hermitian matrices diagonal is presented. We call it Riccati Diagonalization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا