ترغب بنشر مسار تعليمي؟ اضغط هنا

Implementing Binarized Neural Networks with Magnetoresistive RAM without Error Correction

180   0   0.0 ( 0 )
 نشر من قبل Damien Querlioz
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the most exciting applications of Spin Torque Magnetoresistive Random Access Memory (ST-MRAM) is the in-memory implementation of deep neural networks, which could allow improving the energy efficiency of Artificial Intelligence by orders of magnitude with regards to its implementation on computers and graphics cards. In particular, ST-MRAM could be ideal for implementing Binarized Neural Networks (BNNs), a type of deep neural networks discovered in 2016, which can achieve state-of-the-art performance with a highly reduced memory footprint with regards to conventional artificial intelligence approaches. The challenge of ST-MRAM, however, is that it is prone to write errors and usually requires the use of error correction. In this work, we show that these bit errors can be tolerated by BNNs to an outstanding level, based on examples of image recognition tasks (MNIST, CIFAR-10 and ImageNet): bit error rates of ST-MRAM up to 0.1% have little impact on recognition accuracy. The requirements for ST-MRAM are therefore considerably relaxed for BNNs with regards to traditional applications. By consequence, we show that for BNNs, ST-MRAMs can be programmed with weak (low-energy) programming conditions, without error correcting codes. We show that this result can allow the use of low energy and low area ST-MRAM cells, and show that the energy savings at the system level can reach a factor two.



قيم البحث

اقرأ أيضاً

Resistive random access memories (RRAM) are novel nonvolatile memory technologies, which can be embedded at the core of CMOS, and which could be ideal for the in-memory implementation of deep neural networks. A particularly exciting vision is using t hem for implementing Binarized Neural Networks (BNNs), a class of deep neural networks with a highly reduced memory footprint. The challenge of resistive memory, however, is that they are prone to device variation, which can lead to bit errors. In this work we show that BNNs can tolerate these bit errors to an outstanding level, through simulations of networks on the MNIST and CIFAR10 tasks. If a standard BNN is used, up to 10^-4 bit error rate can be tolerated with little impact on recognition performance on both MNIST and CIFAR10. We then show that by adapting the training procedure to the fact that the BNN will be operated on error-prone hardware, this tolerance can be extended to a bit error rate of 4x10^-2. The requirements for RRAM are therefore a lot less stringent for BNNs than more traditional applications. We show, based on experimental measurements on a RRAM HfO2 technology, that this result can allow reduce RRAM programming energy by a factor 30.
We introduce a method to train Binarized Neural Networks (BNNs) - neural networks with binary weights and activations at run-time and when computing the parameters gradient at train-time. We conduct two sets of experiments, each based on a different framework, namely Torch7 and Theano, where we train BNNs on MNIST, CIFAR-10 and SVHN, and achieve nearly state-of-the-art results. During the forward pass, BNNs drastically reduce memory size and accesses, and replace most arithmetic operations with bit-wise operations, which might lead to a great increase in power-efficiency. Last but not least, we wrote a binary matrix multiplication GPU kernel with which it is possible to run our MNIST BNN 7 times faster than with an unoptimized GPU kernel, without suffering any loss in classification accuracy. The code for training and running our BNNs is available.
RRAM-based in-Memory Computing is an exciting road for implementing highly energy efficient neural networks. This vision is however challenged by RRAM variability, as the efficient implementation of in-memory computing does not allow error correction . In this work, we fabricated and tested a differential HfO2-based memory structure and its associated sense circuitry, which are ideal for in-memory computing. For the first time, we show that our approach achieves the same reliability benefits as error correction, but without any CMOS overhead. We show, also for the first time, that it can naturally implement Binarized Deep Neural Networks, a very recent development of Artificial Intelligence, with extreme energy efficiency, and that the system is fully satisfactory for image recognition applications. Finally, we evidence how the extra reliability provided by the differential memory allows programming the devices in low voltage conditions, where they feature high endurance of billions of cycles.
Binarized Neural Networks, a recently discovered class of neural networks with minimal memory requirements and no reliance on multiplication, are a fantastic opportunity for the realization of compact and energy efficient inference hardware. However, such neural networks are generally not entirely binarized: their first layer remains with fixed point input. In this work, we propose a stochastic computing version of Binarized Neural Networks, where the input is also binarized. Simulations on the example of the Fashion-MNIST and CIFAR-10 datasets show that such networks can approach the performance of conventional Binarized Neural Networks. We evidence that the training procedure should be adapted for use with stochastic computing. Finally, the ASIC implementation of our scheme is investigated, in a system that closely associates logic and memory, implemented by Spin Torque Magnetoresistive Random Access Memory. This analysis shows that the stochastic computing approach can allow considerable savings with regards to conventional Binarized Neural networks in terms of area (62% area reduction on the Fashion-MNIST task). It can also allow important savings in terms of energy consumption, if we accept reasonable reduction of accuracy: for example a factor 2.1 can be saved, with the cost of 1.4% in Fashion-MNIST test accuracy. These results highlight the high potential of Binarized Neural Networks for hardware implementation, and that adapting them to hardware constrains can provide important benefits.
Uncertainty plays a key role in real-time machine learning. As a significant shift from standard deep networks, which does not consider any uncertainty formulation during its training or inference, Bayesian deep networks are being currently investiga ted where the network is envisaged as an ensemble of plausible models learnt by the Bayes formulation in response to uncertainties in sensory data. Bayesian deep networks consider each synaptic weight as a sample drawn from a probability distribution with learnt mean and variance. This paper elaborates on a hardware design that exploits cycle-to-cycle variability of oxide based Resistive Random Access Memories (RRAMs) as a means to realize such a probabilistic sampling function, instead of viewing it as a disadvantage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا