ﻻ يوجد ملخص باللغة العربية
The quality of datasets is a critical issue in big data mining. More interesting things could be mined from datasets with higher quality. The existence of missing values in geographical data would worsen the quality of big datasets. To improve the data quality, the missing values are generally needed to be estimated using various machine learning algorithms or mathematical methods such as approximations and interpolations. In this paper, we propose an adaptive Radial Basis Function (RBF) interpolation algorithm for estimating missing values in geographical data. In the proposed method, the samples with known values are considered as the data points, while the samples with missing values are considered as the interpolated points. For each interpolated point, first, a local set of data points are adaptively determined. Then, the missing value of the interpolated point is imputed via interpolating using the RBF interpolation based on the local set of data points. Moreover, the shape factors of the RBF are also adaptively determined by considering the distribution of the local set of data points. To evaluate the performance of the proposed method, we compare our method with the commonly used k Nearest Neighbors (kNN) interpolation and Adaptive Inverse Distance Weighted (AIDW) methods, and conduct three groups of benchmark experiments. Experimental results indicate that the proposed method outperforms the kNN interpolation and AIDW in terms of accuracy, but worse than the kNN interpolation and AIDW in terms of efficiency.
Many tensor-based data completion methods aim to solve image and video in-painting problems. But, all methods were only developed for a single dataset. In most of real applications, we can usually obtain more than one dataset to reflect one phenomeno
The partition of unity (PU) method, performed with local radial basis function (RBF) approximants, has already been proved to be an effective tool for solving interpolation or collocation problems when large data sets are considered. It decomposes th
Data sites selected from modeling high-dimensional problems often appear scattered in non-paternalistic ways. Except for sporadic-clustering at some spots, they become relatively far apart as the dimension of the ambient space grows. These features d
We formulate an oversampled radial basis function generated finite difference (RBF-FD) method to solve time-dependent nonlinear conservation laws. The analytic solutions of these problems are known to be discontinuous, which leads to occurrence of no
A main drawback of classical Tikhonov regularization is that often the parameters required to apply theoretical results, e.g., the smoothness of the sought-after solution and the noise level, are unknown in practice. In this paper we investigate in n