ﻻ يوجد ملخص باللغة العربية
In this paper, we focus on modeling and simulation of two-phase flow with moving contact lines and variable density. A thermodynamically consistent phase-field model with General Navier Boundary Condition is developed based on the concept of quasi-incompressibility and the energy variational method. Then a mass conserving and energy stable C0 finite element scheme is developed to solve the PDE system. Various numerical simulation results show that the proposed schemes are mass conservative, energy stable and the 2nd order for P1 element and 3rd order for P2 element convergence rate in the sense of L2 norm.
A thermodynamically consistent phase-field model is introduced for simulating motion and shape transformation of vesicles under flow conditions. In particular, a general slip boundary condition is used to describe the interaction between vesicles and
In this article, we present and analyze a finite element numerical scheme for a three-component macromolecular microsphere composite (MMC) hydrogel model, which takes the form of a ternary Cahn-Hilliard-type equation with Flory-Huggins-deGennes energ
We propose an energy-stable parametric finite element method (ES-PFEM) to discretize the motion of a closed curve under surface diffusion with an anisotropic surface energy $gamma(theta)$ -- anisotropic surface diffusion -- in two dimensions, while $
In this paper, we propose a finite element pair for incompressible Stokes problem. The pair uses a slightly enriched piecewise linear polynomial space for velocity and piecewise constant space for pressure, and is illustrated to be a lowest-degree co
We introduce a new method for the numerical approximation of time-harmonic acoustic scattering problems stemming from material inhomogeneities. The method works for any frequency $omega$, but is especially efficient for high-frequency problems. It is