ﻻ يوجد ملخص باللغة العربية
Ultrathin sheets of transition metal dichalcogenides (MX$ _2$) with charge density waves (CDWs) is increasingly gaining interest as a promising candidate for graphene-like devices. Although experimental data including stripe/quasi-stripe structure and hidden states have been reported, the ground state of ultrathin MX$ _2$ compounds and, in particular, the origin of anisotropic (stripe and quasi-stripe) CDW phases is a long-standing problem. Anisotropic CDW phases have been explained by Coulomb interaction between domain walls and inter-layer interaction. However, these models assume that anisotropic domain walls can exist in the first place. Here, we report that anisotropic CDW domain walls can appear naturally without assuming anisotropic interactions: We explain the origin of these phases by topological defect theory (line defects in a two-dimensional plane) and interference between harmonics of macroscopic CDW wave functions. We revisit the McMillan-Nakanishi-Shiba model for monolayer 1$T$-TaS$ _2$ and 2$H$-TaSe$ _2$ and show that CDWs with wave vectors that are separated by $120^circ$ (i.e. the three-fold rotation symmetry of the underlying lattice) contain a free-energy landscape with many local minima. Then, we remove this $120^circ$ constraint and show that free energy local minima corresponding to the stripe and quasi-stripe phase appear. Our results imply that Coulomb interaction between domain walls and inter-layer interaction may be secondary factors for the appearance of these phases. Furthermore, this model can predict new CDW phases, hence it may become the basis to study CDW further. We anticipate our results to be a starting point for further study in two-dimensional physics, such as explanation of Hidden CDW states, study the interplay between supersolid symmetry and lattice symmetry, and application to other van der Waals structures.
Rare earth triangular lattice materials have been proposed as a good platform for the investigation of frustrated magnetic ground states. KErSe$_2$ with the delafossite structure, contains perfect two-dimensional Er$^{3+}$ triangular layers separated
We report neutron scattering measurements of single-crystalline YFe$_2$Ge$_2$ in the normal state, which has the same crystal structure to the 122 family of iron pnictide superconductors. YFe$_2$Ge$_2$ does not exhibit long range magnetic order, but
Realistic modeling of competing phases in complex quantum materials has proven extremely challenging. For example, much of the existing density-functional-theory-based first-principles framework fails in the cuprate superconductors. Various many-body
Charge density waves are ubiquitous phenomena in metallic transition metal dichalcogenides. In NbSe$_2$, a triangular $3times3$ structural modulation is coupled to a charge modulation. Recent experiments reported evidence for a triangular-stripe tran
The longitudinal magnetoresistance (MR) is assumed to be hardly realized as the Lorentz force does not work on electrons when the magnetic field is parallel to the current. However, in some cases, longitudinal MR becomes large, which exceeds the tran