ﻻ يوجد ملخص باللغة العربية
Topologically protected gapless edge states are phases of quantum matter which behave as massless Dirac fermions, immunizing against disorders and continuous perturbations. Recently, a new class of topological insulators (TIs) with topological corner states have been theoretically predicted in electric systems, and experimentally realized in two-dimensional (2D) mechanical and electromagnetic systems, electrical circuits, optical and sonic crystals, and elastic phononic plates. Here, we demonstrate a pseudospin-valley-coupled phononic TI, which simultaneously exhibits gapped edge states and topological corner states. Pseudospin-orbit coupling edge states and valley-polarized edge state are respectively induced by the lattice deformation and the symmetry breaking. When both of them coexist, these topological edge states will be greatly gapped and the topological corner state emerges. Under direct field measurements, the robust edge propagation behaving as an elastic waveguide and the topological corner mode working as a robust localized resonance are experimentally confirmed. The pseudospin-valley coupling in our phononic TIs can be well-controlled which provides a reconfigurable platform for the multiple edge and corner states, and exhibits well applications in the topological elastic energy recovery and the highly sensitive sensing.
Recent theoretical studies have extended the Berry phase framework to account for higher electric multipole moments, quadrupole and octupole topological phases have been proposed. Although the two-dimensional quantized quadrupole insulators have been
Recently realized higher order topological insulators have taken a surge of interest among the theoretical and experimental condensed matter community. The two-dimensional second order topological insulators give rise to zero-dimensional localized co
We demonstrate the coexistence of pseudospin- and valley-Hall-like edge states in a photonic crystal with $C_{3v}$ symmetry, which is composed of three interlacing triangular sublattices with the same lattice constants. By tuning the geometry of the
We study the effects of periodic driving on a variant of the Bernevig-Hughes-Zhang (BHZ) model defined on a square lattice. In the absence of driving, the model has both topological and nontopological phases depending on the different parameter value
The electronic states in a corner-overgrown bent GaAs/AlGaAs quantum well heterostructure are studied with numerical Hartree simulations. Transmission electron microscope pictures of the junction justify the sharp-corner assumption. In a tilted magne