ﻻ يوجد ملخص باللغة العربية
We revisit two classical formulas for the Bessel function of the first kind, due to von Lommel and Weber-Schafheitlin, in a probabilistic setting. The von Lommel formula exhibits a family of solutions to the van Dantzig problem involving the generalized semi-circular distributions and the first hitting times of a Bessel process with positive parameter, whereas the Weber-Schafheitlin formula allows one to construct non-trivial moments of Gamma type having a signed spectral measure. Along the way, we observe that the Weber-Schafheitlin formula is a simple consequence of the von Lommel formula, the Fresnel integral and the Selberg integral.
We solve the Cauchy problem for the $n$-dimensional wave equation using elementary properties of the Bessel functions.
The use of the umbral formalism allows a significant simplification of the derivation of sum rules involving products of special functions and polynomials. We rederive in this way known sum rules and addition theorems for Bessel functions. Furthermor
In this paper, sums represented in (3) are studied. The expressions are derived in terms of Bessel functions of the first and second kinds and their integrals. Further, we point out the integrals can be written as a Meijer G function.
In a 2006 article (cite{A1}), Allouba gave his quadratic covariation differentiation theory for It^os integral calculus. He defined the derivative of a semimartingale with respect to a Brownian motion as the time derivative of their quadratic covaria
In this note, we derive the closed-form expression for the summation of series $sum_{n=0}^{infty}nJ_n(x)partial J_n/partial n$, which is found in the calculation of entanglement entropy in 2-d bosonic free field, in terms of $Y_0$, $J_0$ and an integ