ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining Axion Mass through Gamma-ray Observations of Pulsars

51   0   0.0 ( 0 )
 نشر من قبل Sheridan Lloyd Mr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze 9 years of PASS 8 $textit{Fermi}$-LAT data in the 60$-$500 MeV range and determine flux upper limits (UL) for 17 gamma-ray dark pulsars as a probe of axions produced by nucleon-nucleon Bremsstrahlung in the pulsar core. Using a previously published axion decay gamma-ray photon flux model for pulsars which relies on a high core temperature of 20 MeV, we improve the determination of the UL axion mass ($m_a$), at 95 percent confidence level, to 9.6 $times$ 10$^{-3}$ eV, which is a factor of 8 improvement on previous results. We show that the axion emissivity (energy loss rate per volume) at realistic lower pulsar core temperatures of 4 MeV or less is reduced to such an extent that axion emissivity and the gamma-ray signal becomes negligible. We consider an alternative emission model based on energy loss rate per mass to allow $m_a$ to be constrained with $Fermi$-LAT observations. This model yields a plausible UL $m_a$ of 10$^{-6}$ eV for pulsar core temperature $<$ 0.1 MeV but knowledge of the extent of axion to photon conversion in the pulsar $B$ field would be required to make a precise UL axion mass determination. The peak of axion flux is likely to produce gamma-rays in the $leq$ 1 MeV energy range and so future observations with medium energy gamma-ray missions, such as AMEGO and e-ASTROGAM, will be vital to further constrain UL $m_a$.

قيم البحث

اقرأ أيضاً

74 - P. S. Ray , M. Kerr , D. Parent 2010
We present precise phase-connected pulse timing solutions for 16 gamma-ray-selected pulsars recently discovered using the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope plus one very faint radio pulsar (PSR J1124-5916) that is more effectively timed with the LAT. We describe the analysis techniques including a maximum likelihood method for determining pulse times of arrival from unbinned photon data. A major result of this work is improved position determinations, which are crucial for multi-wavelength follow up. For most of the pulsars, we overlay the timing localizations on X-ray images from Swift and describe the status of X-ray counterpart associations. We report glitches measured in PSRs J0007+7303, J1124-5916, and J1813-1246. We analyze a new 20 ks Chandra ACIS observation of PSR J0633+0632 that reveals an arcminute-scale X-ray nebula extending to the south of the pulsar. We were also able to precisely localize the X-ray point source counterpart to the pulsar and find a spectrum that can be described by an absorbed blackbody or neutron star atmosphere with a hard powerlaw component. Another Chandra ACIS image of PSR J1732-3131 reveals a faint X-ray point source at a location consistent with the timing position of the pulsar. Finally, we present a compilation of new and archival searches for radio pulsations from each of the gamma-ray-selected pulsars as well as a new Parkes radio observation of PSR J1124-5916 to establish the gamma-ray to radio phase offset.
We apply the axion-photon conversion mechanism to the 130 GeV $gamma$-ray line observed by the Fermi satellite. Near the Galactic center, some astrophysical sources and/or particle dark matter can produce energetic axions (or axionlike particles), an d the axions convert to $gamma$ rays in Galactic magnetic fields along their flight to the Earth. Since continuum $gamma$-ray and antiproton productions are sufficiently suppressed in axion production, the scenario fits the 130 GeV $gamma$-ray line without conflicting with cosmic ray measurements. We derive the axion production cross section and the decay rate of dark matter to fit the $gamma$-ray excess as functions of axion parameters. In the scenario, the $gamma$-ray spatial distributions depend on both the dark matter profile and the magnetic field configuration, which will be tested by future $gamma$-ray observations, e.g., H.E.S.S. II, CTA, and GAMMA-400. As an illustrative example, we study realistic supersymmetric axion models, and show the favored parameters that nicely fit the $gamma$-ray excess.
The Large Area Telescope (LAT) on Fermi has detected ~150 gamma-ray pulsars, about a third of which were discovered in blind searches of the $gamma$-ray data. Because the angular resolution of the LAT is relatively poor and blind searches for pulsars (especially millisecond pulsars, MSPs) are very sensitive to an error in the position, one must typically scan large numbers of locations. Identifying plausible X-ray counterparts of a putative pulsar drastically reduces the number of trials, thus improving the sensitivity of pulsar blind searches with the LAT. I discuss our ongoing program of Swift, XMM-Newton, and Chandra observations of LAT unassociated sources in the context of our blind searches for gamma-ray pulsars.
104 - R. P. Mignani 2016
We report the analysis of the first deep optical observations of three isolated $gamma$-ray pulsars detected by the {em Fermi Gamma-ray Space Telescope}: the radio-loud PSR, J0248+6021 and PSR, J0631+1036, and the radio-quiet PSR, J0633+0632. The lat ter has also been detected in the X rays. The pulsars are very similar in their spin-down age ($tau sim$40--60 kyrs), spin-down energy ($dot{E} sim10^{35}$ erg s$^{-1}$), and dipolar surface magnetic field ($B sim 3$--$5times10^{12}$ G). These pulsars are promising targets for multi-wavelength observations, since they have been already detected in $gamma$ rays and in radio or X-rays. None of them has been detected yet in the optical band. We observed the three pulsar fields in 2014 with the Spanish 10.4m Gran Telescopio Canarias (GTC). We could not find any candidate optical counterpart to the three pulsars close to their most recent radio or {em Chandra} positions down to $3 sigma$ limits of $gsim27.3$, $gsim27$, $gsim27.3$ for PSR, J0248+6021, J0631+1036, and J0633+0632, respectively. From the inferred optical upper limits and estimated distance and interstellar extinction, we derived limits on the pulsar optical luminosity. We also searched for the X-ray counterpart to PSR, J0248+6021 with chan but we did not detect the pulsar down to a 3$sigma$ flux limit of $5 times 10^{-14}$ erg cm$^{-2}$ s$^{-1}$ (0.3--10 keV). For all these pulsars, we compared the optical flux upper limits with the extrapolations in the optical domain of the $gamma$-ray spectra and compared their multi-wavelength properties with those of other $gamma$-ray pulsars of comparable age.
Observations of pulsars with the Large Area Telescope (LAT) on the Fermi satellite have revolutionized our view of the gamma-ray pulsar population. For the first time, a large number of young gamma-ray pulsars have been discovered in blind searches o f the LAT data. More generally, the LAT has discovered many new gamma-ray sources whose properties suggest that they are powered by unknown pulsars. Radio observations of gamma-ray sources have been key to the success of pulsar studies with the LAT. For example, radio observations of LAT-discovered pulsars provide constraints on the relative beaming fractions, which are crucial for pulsar population studies. Also, radio searches of LAT sources with no known counterparts have been very efficient, with the discovery of over forty millisecond pulsars. I review radio follow-up studies of LAT-discovered pulsars and unidentified sources, and discuss some of the implications of the results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا