ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic damping of the spin fluctuations in doped La2-xSrxCuO4 studied by resonant inelastic x-ray scattering

117   0   0.0 ( 0 )
 نشر من قبل Stephen Hayden
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report high-resolution resonant inelastic x-ray scattering (RIXS) measurements of the collective spin fluctuations in three compositions of the superconducting cuprate system La2-xSrxCuO4. We have mapped out the excitations throughout much of the 2-D (h,k) Brillouin zone. The spin fluctuations in La2-xSrxCuO4 are found to be fairly well-described by a damped harmonic oscillator model, thus our data allows us to determine the full wavevector dependence of the damping parameter. This parameter increases with doping and is largest along the (h, h) line, where it is peaked near (0.2,0.2). We have used a new procedure to determine the absolute wavevector-dependent susceptibility for the doped compositions La2-xSrxCuO4 (x=0.12,0.16) by normalising our data to La2CuO4 measurements made with inelastic neutron scattering (INS). We find that the evolution with doping of the intensity of high-energy excitations measured by RIXS and INS is consistent. For the doped compositions, the wavevector-dependent susceptibility is much larger at (1/4,1/4) than at (1/2,0). It increases rapidly along the (h,h) line towards the antiferromagnetic wavevector of the parent compound (1/2,1/2). Thus, the strongest magnetic excitations, and those predicted to favour superconductive pairing, occur towards the (1/2,1/2) position as observed by INS.



قيم البحث

اقرأ أيضاً

We present RIXS data at O K edge from La2-xSrxCuO4 vs. doping between x=0.10 and x=0.22 with attention to the magnetic excitations in the Mid-Infrared region. The sampling done by RIXS is the same as in the undoped cuprates provided the excitation is at the first pre-peak induced by doping. Note that this excitation energy is about 1.5 eV lower than that needed to see bimagnons in the parent compound. This approach allows the study of the upper region of the bimagnon continuum around 450 meV within about one third of the Brilluoin Zone around Gamma. The results show the presence of damped bimagnons and of higher even order spin excitations with almost constant spectral weight at all the dopings explored here. The implications on high Tc studies are briefly addressed.
We used resonant inelastic x-ray scattering (RIXS) with and without analysis of the scattered photon polarization, to study dispersive spin excitations in the high temperature superconductor YBa2Cu3O6+x over a wide range of doping levels (0.1 < x < 1 ). The excitation profiles were carefully monitored as the incident photon energy was detuned from the resonant condition, and the spin excitation energy was found to be independent of detuning for all x. These findings demonstrate that the largest fraction of the spin-flip RIXS profiles in doped cuprates arises from magnetic collective modes, rather than from incoherent particle-hole excitations as recently suggested theoretically [Benjamin et al. Phys. Rev. Lett. 112, 247002(2014)]. Implications for the theoretical description of the electron system in the cuprates are discussed.
Resonant inelastic X-ray scattering (RIXS) is a powerful probe of elementary excitations in solids. It is now widely applied to study magnetic excitations. However, its complex cross-section means that RIXS has been more difficult to interpret than i nelastic neutron scattering (INS). Here we report high-resolution RIXS measurements of magnetic excitations of La2CuO4, the antiferromagnetic parent of one system of high-temperature superconductors. At high energies (~2 eV), the RIXS spectra show angular-dependent dd orbital excitations which are found to be in good agreement with single-site multiplet calculations. At lower energies (<0.3 eV), we show that the wavevector-dependent RIXS intensities are proportional to the product of the single-ion spin-flip cross section and the dynamical susceptibility of the spin-wave excitations. When the spin-flip crosssection is dividing out, the RIXS magnon intensities show a remarkable resemblance to INS data. Our results show that RIXS is a quantitative probe the dynamical spin susceptibility in cuprate and therefore should be used for quantitative investigation of other correlated electron materials.
135 - L. Chaix , E. W. Huang , S. Gerber 2018
We investigated the doping dependence of magnetic excitations in the lightly doped cuprate La2-xSrxCuO4 via combined studies of resonant inelastic x-ray scattering (RIXS) at the Cu L3-edge and theoretical calculations. With increasing doping, the mag non dispersion is found to be essentially unchanged, but the spectral width broadens and the spectral weight varies differently at different momenta. Near the Brillouin zone center, we directly observe bimagnon excitations which possess the same energy scale and doping dependence as previously observed by Raman spectroscopy. They disperse weakly in energy-momentum space, and are consistent with a bimagnon dispersion that is renormalized by the magnon-magnon interaction at the zone center.
We present a resonant inelastic x-ray scattering (RIXS) study of spin and charge excitations in overdoped La1.77Sr0.23CuO4 along two high-symmetry directions. The line shape of these excitations is analyzed and they are shown to be highly overdamped. Their spectral weight and damping are found to be strongly momentum dependent. Qualitative agreement between these observations and a calculated RPA susceptibility is obtained for this overdoped compound, implying that a significant contribution to the RIXS signal stems from a continuum of charge excitations. Furthermore, this suggests that the spin-excitations in the overdoped regime can be captured qualitatively by an itinerant picture. Our calculations also predict a new low-energy spin excitation branch to exist along the nodal direction near the zone center. With the energy resolution of the present experiment, this branch is not resolvable but we show that next generation of high-resolution spectrometers will be able to test this prediction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا