ﻻ يوجد ملخص باللغة العربية
Comets contain abundant amounts of organic and inorganic species. Many of the volatile molecules in comets have also been observed in the interstellar medium and some of them even with similar relative abundances, indicating formation under similar conditions or even sharing a common chemical pathway. There is a growing amount of evidence that suggests comets inherit and preserve substantial fractions of materials inherited from previous evolutionary phases, potentially indicating that commonplace processes occurred throughout comet-forming regions. Through impacts, part of this material has also been transported to the inner planetary system, including the terrestrial planets. While comets have been ruled out as a major contributor to terrestrial ocean water, substantial delivery of volatile species to the Earths atmosphere, and as a consequence also organic molecules to its biomass, appears more likely. Comets contain many species of pre-biotic relevance and molecules that are related to biological processes on Earth, and have hence been proposed as potential indicators for the presence of biological processes in the search of extraterrestrial life. While the delivery of cometary material to Earth may have played a crucial role in the emergence of life, the presence of such alleged biosignature molecules in the abiotical environment of comets complicates the detection of life elsewhere in the universe.
We use the gravitational instability formation scenario of cometesimals to derive the aggregate size that can be released by the gas pressure from the nucleus of comet 67P/Churyumov-Gerasimenko for different heliocentric distances and different volat
Dust is an important constituent in cometary comae; its analysis is one of the major objectives of ESAs Rosetta mission to comet 67P/Churyumov-Gerasimenko (C-G). Several instruments aboard Rosetta are dedicated to studying various aspects of dust in
Comets are thought to preserve almost pristine dust particles, thus providing a unique sample of the properties of the early solar nebula. The microscopic properties of this dust played a key part in particle aggregation during the formation of the S
Molecular oxygen has been detected in the coma of comet 67P/Churyumov-Gerasimenko with abundances in the 1-10% range by the ROSINA-DFMS instrument on board the Rosetta spacecraft. Here we find that the radiolysis of icy grains in low-density environm
We report on the first major temporal morphological changes observed on the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, in the smooth terrains of the Imhotep region. We use images of the OSIRIS cameras onboard Rosetta to follow the tem