ترغب بنشر مسار تعليمي؟ اضغط هنا

Linking planetesimal and dust content in protoplanetary disks via a local toy model

56   0   0.0 ( 0 )
 نشر من قبل Konstantin Gerbig
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

If planetesimal formation is an efficient process, as suggested by several models involving gravitational collapse of pebble clouds, then, before long, a significant part of the primordial dust mass should be absorbed in many km sized objects. A good understanding of the total amount of solids in the disk around a young star is crucial for planet formation theory. But as the mass of particles above the mm size cannot be assessed observationally, one must ask how much mass is hidden in bigger objects. We perform 0-d local simulations to study how the planetesimal to dust and pebble ratio is evolving in time and to develop an understanding of the potentially existing mass in planetesimals for a certain amount of dust and pebbles at a given disk age. We perform a parameter study based on a model considering dust growth, planetesimal formation and collisional fragmentation of planetesimals, while neglecting radial transport processes. While at early times, dust is the dominant solid particle species, there is a phase during which planetesimals make up a significant portion of the total mass starting at approximately $10^4 - 10^6$ yr. The time of this phase and the maximal total planetesimal mass strongly depend on the distance to the star $R$, the initial disk mass, and the efficiency of planetesimal formation $epsilon$. After approximately $10^6$ yr, our model predicts planetesimal collisions to dominate, which resupplies small particles. In our model, planetesimals form fast and everywhere in the disk. For a given $epsilon$, we were able to relate the dust content and mass of a given disk to its planetesimal content, providing us with some helpful basic intuition about mass distribution of solids and its dependence on underlying physical processes.

قيم البحث

اقرأ أيضاً

Planet formation is thought to begin with the growth of dust particles in protoplanetary disks from micrometer to millimeter and centimeter sizes. Dust growth is hindered by a number of growth barriers, according to dust evolution theory, while obser vational evidence indicates that somehow these barriers must have been overcome. The observational evidence of dust traps, in particular the Oph IRS 48 disk, with the Atacama Large Millimeter/submillimeter Array (ALMA) has changed our view of the dust growth process. In this article I review the history of dust trapping in models and observations.
Theoretical models of the ionization state in protoplanetary disks suggest the existence of large areas with low ionization and weak coupling between the gas and magnetic fields. In this regime hydrodynamical instabilities may become important. In th is work we investigate the gas and dust structure and dynamics for a typical T Tauri system under the influence of the vertical shear instability (VSI). We use global 3D radiation hydrodynamics simulations covering all $360^circ$ of azimuth with embedded particles of 0.1 and 1mm size, evolved for 400 orbits. Stellar irradiation heating is included with opacities for 0.1- to 10-$mu$m-sized dust. Saturated VSI turbulence produces a stress-to-pressure ratio of $alpha simeq 10^{-4}$. The value of $alpha$ is lowest within 30~au of the star, where thermal relaxation is slower relative to the orbital period and approaches the rate below which VSI is cut off. The rise in $alpha$ from 20 to 30~au causes a dip in the surface density near 35~au, leading to Rossby wave instability and the generation of a stationary, long-lived vortex spanning about 4~au in radius and 40~au in azimuth. Our results confirm previous findings that mm size grains are strongly vertically mixed by the VSI. The scale height aspect ratio for 1mm grains is determined to be 0.037, much higher than the value $H/r=0.007$ obtained from millimeter-wave observations of the HL~Tau system. The measured aspect ratio is better fit by non-ideal MHD models. In our VSI turbulence model, the mm grains drift radially inwards and many are trapped and concentrated inside the vortex. The turbulence induces a velocity dispersion of $sim 12$~m/s for the mm grains, indicating that grain-grain collisions could lead to fragmentation.
Tiny meteoroids entering the Earths atmosphere and inducing meteor showers have long been thought to originate partly from cometary dust. Together with other dust particles, they form a huge cloud around the Sun, the zodiacal cloud. From our previous studies of the zodiacal light, as well as other independent methods (dynamical studies, infrared observations, data related to Earths environment), it is now established that a significant fraction of dust particles entering the Earths atmosphere comes from Jupiter-family comets (JFCs). This paper relies on our understanding of key properties of the zodiacal cloud and of comet 67P/Churyumov-Gerasimenko, extensively studied by the Rosetta mission to a JFC. The interpretation, through numerical and experimental simulations of zodiacal light local polarimetric phase curves, has recently allowed us to establish that interplanetary dust is rich in absorbing organics and consists of fluffy particles. The ground-truth provided by Rosetta presently establishes that the cometary dust particles are rich in organic compounds and consist of quite fluffy and irregular aggregates. Our aims are as follows: (1) to make links, back in time, between peculiar micrometeorites, tiny meteoroids, interplanetary dust particles, cometary dust particles, and the early evolution of the Solar System, and (2) to show how detailed studies of such meteoroids and of cometary dust particles can improve the interpretation of observations of dust in protoplanetary and debris disks. Future modeling of dust in such disks should favor irregular porous particles instead of more conventional compact spherical particles.
ALMA has revolutionized our view of protoplanetary disks, revealing structures such as gaps, rings and asymmetries that indicate dust trapping as an important mechanism in the planet formation process. However, the high resolution images have also sh own that the optically thin assumption for millimeter continuum emission may not be valid and the low values of the spectral index may be related to optical depth rather than dust growth. Longer wavelength observations are essential to properly disentangle these effects. The high sensitivity and spatial resolution of the next-generation Very Large Array (ngVLA) will open up the possibilities to spatially resolve disk continuum emission at centimeter wavelengths and beyond, which allows the study of dust growth in disks in the optically thin regime and further constrain models of planet formation.
327 - JT Laune , Hui Li , Shengtai Li 2019
Tidal interactions between the embedded planets and their surrounding protoplanetary disks are often postulated to produce the observed complex dust substructures, including rings, gaps, and asymmetries. In this Letter, we explore the consequences of dust coagulation on the dust dynamics and ring morphology. Coagulation of dust grains leads to dust size growth which, under typical disk conditions, produces faster radial drifts, potentially threatening the dust ring formation. Utilizing 2D hydrodynamical simulations of protoplanetary disks which include a full treatment of dust coagulation, we find that if the planet does not open a gap quickly enough, the formation of an inner ring is impeded due to dust coagulation and subsequent radial drift. Furthermore, we find that a buildup of sub-mm sized grains often appears in the dust emission at the outer edge of the dust disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا