ترغب بنشر مسار تعليمي؟ اضغط هنا

DFT-based energy shifts screening of Na$_x$K$_{55-x}$ alloy clusters

48   0   0.0 ( 0 )
 نشر من قبل Maolin Bo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Compositional effects in NaK alloy clusters have been studied using bond order length strength notation and density functional theory calculations. The results reveal binding energy shifts of the NaK alloy clusters under different elemental compositions. Atomic arrangements that can be used to predict the structures of stable experimental NaK alloys were also obtained. Our study of these alloy nanoclusters has uncovered a trend correlating atomic position and composition with binding energy. We believe this data will help in the experimental preparation of alloy nanoclusters.

قيم البحث

اقرأ أيضاً

23Na NMR studies of the Na-K eutectic alloy embedded into porous glass with 7 nm pores showed that melting of Na2K confined nanoparticles is a continuous process with smooth changes in the Knight shift of a narrow resonance line and nuclear spin rela xation between those in the crystalline and liquid states. The intermediate state which occurs upon melting is stable and more favorable than the liquid state. The inverse freezing transformation can be sharp as at a first order transition or continuous depending on the initial temperature of cooling. The results suggest revision of theoretical predictions for the melting and freezing transitions in confined geometry.
Aiming at the future spintronics device applications of the spin-polarized surface states in three-dimensional topological insulator, a highly insulating bulk state and a tunable Dirac cone surface state are required. Here we employ a slab model havi ng hetero-structural Bi2Se3-related quintuple layers and perform first-principles simulations. Our computational results show that the Dirac-point energy can be optimally tuned by selecting an appropriate pair of materials so that the work function at the surface quintuple layer is slightly different from that at the inner quintuple layers. The ideal surface state is obtained in Bi2Te3/(Bi2Te2Se)4/Bi2Te3 slab, in which the Fermi lines show the significant warping effect and both the in-plane and the out-of-plane components of the spin polarization emerge.
A set of thin film Mn$_x$Si$_{1-x}$ alloy samples with different manganese concentration x = 0.44 - 0.63 grown by the pulsed laser deposition (PLD) method onto the Al$_2$O$_3$(0001) substrate was investigated in the temperature range 4 - 300 K using ferromagnetic resonance (FMR) measurements in the wide range of frequencies (f = 7 - 60 GHz) and magnetic fields (H = 0 - 30 kOe). For samples with x = 0.52 - 0.55, FMR data show clear evidence of ferromagnetism with high Curie temperatures T$_text{C}$ ~ 300 K. These samples demonstrate complex and unusual character of magnetic anisotropy described in the frame of phenomenological model as a combination of the essential second order easy plane anisotropy contribution and the additional forth order uniaxial anisotropy contribution with easy direction normal to the film plane. We explain the obtained results by a polycrystalline (mosaic) structure of the films caused by the film-substrate lattice mismatch. The existence of extra strains at the crystallite boundaries leads to an essential inhomogeneous magnetic anisotropy in the film plane.
The effect of hydrostatic pressure and partial Na substitution on the normal-state properties and the superconducting transition temperature ($T_c$) of K$_{1-x}$Na$_x$Fe$_2$As$_2$ single crystals were investigated. It was found that a partial Na subs titution leads to a deviation from the standard $T^2$ Fermi-liquid behavior in the temperature dependence of the normal-state resistivity. It was demonstrated that non-Fermi liquid like behavior of the resistivity for K$_{1-x}$Na$_{x}$Fe$_2$As$_2$ and some KFe$_2$As$_2$ samples can be explained by disorder effect in the multiband system with rather different quasiparticle effective masses. Concerning the superconducting state our data support the presence of a shallow minimum around 2 GPa in the pressure dependence of $T_c$ for stoichiometric KFe$_2$As$_2$. The analysis of $T_c$ in the K$_{1-x}$Na$_{x}$Fe$_2$As$_2$ at pressures below 1.5 GPa showed, that the reduction of $T_c$ with Na substitution follows the Abrikosov-Gorkov law with the critical temperature $T_{c0}$ of the clean system (without pair-breaking) which linearly depends on the pressure. Our observations, also, suggest that $T_c$ of K$_{1-x}$Na$_x$Fe$_2$As$_2$ is nearly independent of the lattice compression produced by the Na substitution. Further, we theoretically analyzed the behavior of the band structure under pressure within the generalized gradient approximation (GGA). A qualitative agreement between the calculated and the recently in de Haas-van Alphen experiments [T. Terashima et al., Phys.Rev.B89, 134520(2014)] measured pressure dependencies of the Fermi-surface cross-sections has been found. These calculations, also, indicate that the observed minimum around 2~GPa in the pressure dependence of $T_c$ may occur without a change of the pairing symmetry.
312 - D. Pillay , M.D. Johannes , 2008
The idea that surface effects may play an important role in suppressing $e_g$ Fermi surface pockets on Na$_x$CoO$_2$ $(0.333 le x le 0.75)$ has been frequently proposed to explain the discrepancy between LDA calculations (performed on the bulk compou nd) which find $e_g$ hole pockets present and ARPES experiments, which do not observe the hole pockets. Since ARPES is a surface sensitive technique it is important to investigate the effects that surface formation will have on the electronic structure of Na$_{1/3}$CoO$_2$ in order to more accurately compare theory and experiment. We have calculated the band structure and Fermi surface of cleaved Na$_{1/3}$CoO$_2$ and determined that the surface non-trivially affects the fermiology in comparison to the bulk. Additionally, we examine the likelihood of possible hydroxyl cotamination and surface termination. Our results show that a combination of surface formation and contamination effects could resolve the ongoing controversy between ARPES experiments and theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا