ترغب بنشر مسار تعليمي؟ اضغط هنا

Epitaxial Growth and Characterization of AlInN Based Core-Shell Nanowire Light Emitting Diodes Operating in the Ultraviolet Spectrum

186   0   0.0 ( 0 )
 نشر من قبل Ravi Teja Velpula
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the demonstration of the first axial AlInN ultraviolet core-shell nanowire light-emitting diodes with highly stable emission in the UV wavelength range. During the epitaxial growth of AlInN layer, an AlInN shell is spontaneously formed, resulted in the reduced nonradiative recombination on nanowire surface. The AlInN nanowires exhibit high internal quantum efficiency of ~ 52% at room temperature for emission at 295nm. The peak emission wavelength can be varied from 290 nm to 355 nm by changing the growth condition. Moreover, significantly strong transverse magnetic (TM) polarized emission is recorded which is ~ 4 times stronger compared to the transverse electric (TE) polarized light at 295 nm. This study provides alternative approach for the fabrication of new type of high-performance ultraviolet light-emitters.

قيم البحث

اقرأ أيضاً

We report on the illustration of the first electron blocking layer (EBL) free AlInN nanowire light-emitting diodes (LEDs) operating in the deep ultraviolet (DUV) wavelength region (sub-250 nm). We have systematically analyzed the results using APSYS software and compared with simulated AlGaN nanowire DUV LEDs. From the simulation results, significant efficiency droop was observed in AlGaN based devices, attributed to the significant electron leakage. However, compared to AlGaN nanowire DUV LEDs at similar emission wavelength, the proposed single quantum well (SQW) AlInN based light-emitters offer higher internal quantum efficiency without droop up to current density of 1500 A/cm2 and high output optical power. Moreover, we find that transverse magnetic polarized emission is ~ 5 orders stronger than transverse electric polarized emission at 238 nm wavelength. Further research shows that the performance of the AlInN DUV nanowire LEDs decreases with multiple QWs in the active region due to the presence of the non-uniform carrier distribution in the active region. This study provides important insights on the design of new type of high performance AlInN nanowire DUV LEDs, by replacing currently used AlGaN semiconductors.
This article presents the use of flexible carbon substrates for the growth of III-nitride nanowire light emitters. A dense packing of gallium nitride nanowires were grown on a carbon paper substrate. The nanowires grew predominantly along the a-plane direction, normal to the local surface of the carbon paper. Strong photo- and electro-luminescence was observed from InGaN quantum well light emitting diode nanowires.
We present the combined analysis of the electroluminescence (EL) as well as the current-voltage (I-V) behavior of single, freestanding (In,Ga)N/GaN nanowire (NW) light-emitting diodes (LEDs) in an unprocessed, self-assembled ensemble grown by molecul ar beam epitaxy. The data were acquired in a scanning electron microscope equipped with a micromanipulator and a luminescence detection system. Single NW spectra consist of emission lines originating from different quantum wells, and the width of the spectra increases with decreasing peak emission energy. The corresponding I-V characteristics are described well by the modified Shockley equation. The key advantage of this measurement approach is the possibility to correlate the EL intensity of a single NW LED with the actual current density in this NW. This way, the external quantum efficiency (EQE) can be investigated as a function of the current in a single NW LED. The comparison of the EQE characteristic of single NWs and the ensemble device allows a quite accurate determination of the actual number of emitting NWs in the working ensemble LED and the respective current densities in its individual NWs. This information is decisive for a meaningful and comprehensive characterization of a NW ensemble device, rendering the measurement approach employed here a very powerful analysis tool.
Solution-processed planar perovskite light-emitting diodes (LEDs) promise high-performance and cost-effective electroluminescent (EL) devices ideal for large-area display and lighting applications. Exploiting emission layers with high ratios of horiz ontal transition dipole moments (TDMs) is expected to boost photon outcoupling of planar LEDs. However, LEDs based on anisotropic perovskite nanoemitters remains to be inefficient (external quantum efficiency, EQE <5%), due to the difficulties of simultaneously controlling the orientations of TDMs, achieving high photoluminescence quantum yields (PLQYs) and realizing charge balance in the films of the assembled nanostructures. Here we demonstrate efficient EL from an in-situ grown continuous perovskite film comprising of a monolayer of face-on oriented nanoplatelets. The ratio of horizontal TDMs of the perovskite nanoplatelet films is ~84%, substantially higher than that of isotropic emitters (67%). The nanoplatelet film shows a high PLQY of ~75%. These merits enable LEDs with a peak EQE of 23.6%, representing the most efficient perovskite LEDs.
We demonstrate cryogenic, electrically-injected, waveguide-coupled Si light-emitting diodes (LEDs) operating at 1.22 $mu$m. The active region of the LED consists of W centers implanted in the intrinsic region of a $p$-$i$-$n$ diode. The LEDs are inte grated on waveguides with superconducting nanowire single-photon detectors (SNSPDs). We demonstrate the scalability of this platform with an LED coupled to eleven SNSPDs in a single integrated photonic device. Such on-chip optical links may be useful for quantum information or neuromorphic computing applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا