ﻻ يوجد ملخص باللغة العربية
We derive a set of light-cone sum rules relating the hadronic form factors relevant for $Bto Kpiell^+ell^-$ decays to the $B$-meson light-cone distribution amplitudes (LCDAs). We obtain the sum rule relations for all $Bto Kpi$ form factors of (axial)vector and (pseudo)tensor $bto s$ currents with a $P$-wave $Kpi$ system. Our results reduce to the known light-cone sum rules for $Bto K^*$ form factors in the limit of a single narrow-width resonance. We update the operator-product expansion for the underlying correlation function by including a more complete set of $B$-meson LCDAs with higher twists, and produce numerical results for all $Bto K^*$ form factors in the narrow-width limit. We then use the new sum rules to estimate the effect of a non-vanishing $K^*$ width in $Bto K^*$ transitions, and find that this effect is universal and increases the factorizable part of the rate of $Bto K^*X$ decays by a factor of $20%$. This effect, by itself, goes in the direction of increasing the current tension in the differential $Bto K^*mumu$ branching fractions. We also discuss $Bto Kpi$ transitions outside the $K^*$ window, and explain how measurements of $Bto Kpiellell$ observables above the $K^*$ region can be used to further constrain the $Bto K^*$ form factors.
The form factors of the semileptonic $Bto pipiellbar u$ decay are calculated from QCD light-cone sum rules with the distribution amplitudes of dipion states. This method is valid in the kinematical region, where the hadronic dipion state has a small
We reconsider and update the QCD light-cone sum rules for $Bto pi$ form factors. The gluon radiative corrections to the twist-2 and twist-3 terms in the correlation functions are calculated. The $bar{MS}$ $b$-quark mass is employed, instead of the on
We derive new QCD sum rules for $Bto D$ and $Bto D^*$ form factors. The underlying correlation functions are expanded near the light-cone in terms of $B$-meson distribution amplitudes defined in HQET, whereas the $c$-quark mass is kept finite. The le
Form factors of the rare $Lambda_{b}(Lambda_{b}^*)to Nell^{+}ell^{-}$ decays are calculated in the framework of the light cone QCD sum rules by taking into account of the contributions from the negative parity baryons. Using the obtained results on t
We study the electromagnetic nucleon form factors within the approach based on light-cone sum rules. We include the next-to-leading-order corrections for the contributions of twist-three and twist-four operators and a consistent treatment of the nucl