ﻻ يوجد ملخص باللغة العربية
Let $d, n in mathbb{Z}^+$ such that $1leq d leq n$. A $d$-code $mathcal{C} subset mathbb{F}_q^{n times n}$ is a subset of order $n$ square matrices with the property that for all pairs of distinct elements in $mathcal{C}$, the rank of their difference is greater than or equal to $d$. A $d$-code with as many as possible elements is called a maximum $d$-code. The integer $d$ is also called the minimum distance of the code. When $d<n$, a classical example of such an object is the so-called generalized Gabidulin code. There exist several classes of maximum $d$-codes made up respectively of symmetric, alternating and hermitian matrices. In this article we focus on such examples. Precisely, we determine their automorphism groups and solve the equivalence issue for them. Finally, we exhibit a maximum symmetric $2$-code which is not equivalent to the one with same parameters known so far.
Optimal rank-metric codes in Ferrers diagrams can be used to construct good subspace codes. Such codes consist of matrices having zeros at certain fixed positions. This paper generalizes the known constructions for Ferrers diagram rank-metric (FDRM)
We define the rank-metric zeta function of a code as a generating function of its normalized $q$-binomial moments. We show that, as in the Hamming case, the zeta function gives a generating function for the weight enumerators of rank-metric codes. We
In this paper we study properties and invariants of matrix codes endowed with the rank metric, and relate them to the covering radius. We introduce new tools for the analysis of rank-metric codes, such as puncturing and shortening constructions. We g
Four constructions for Ferrers diagram rank-metric (FDRM) codes are presented. The first one makes use of a characterization on generator matrices of a class of systematic maximum rank distance codes. By introducing restricted Gabidulin codes, the se
A $t$-$(n,d,lambda)$ design over ${mathbb F}_q$, or a subspace design, is a collection of $d$-dimensional subspaces of ${mathbb F}_q^n$, called blocks, with the property that every $t$-dimensional subspace of ${mathbb F}_q^n$ is contained in the same