ترغب بنشر مسار تعليمي؟ اضغط هنا

Uranus and Neptune are key to understand planets with hydrogen atmospheres

107   0   0.0 ( 0 )
 نشر من قبل Tristan Guillot
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tristan Guillot




اسأل ChatGPT حول البحث

Uranus and Neptune are the last unexplored planets of the Solar System. I show that they hold crucial keys to understand the atmospheric dynamics and structure of planets with hydrogen atmospheres. Their atmospheres are active and storms are believed to be fueled by methane condensation which is both extremely abundant and occurs at low optical depth. This means that mapping temperature and methane abundance as a function of position and depth will inform us on how convection organizes in an atmosphere with no surface and condensates that are heavier than the surrounding air, a general feature of gas giants. Using this information will be essential to constrain the interior structure of Uranus and Neptune themselves, but also of Jupiter, Saturn and numerous exoplanets with hydrogen atmospheres. Owing to the spatial and temporal variability of these atmospheres, an orbiter is required. A probe would provide a reference profile to lift ambiguities inherent to remote observations. It would also measure abundances of noble gases which can be used to reconstruct the history of planet formation in the Solar System. Finally, mapping the planets gravity and magnetic fields will be essential to constrain their global composition, structure and evolution.

قيم البحث

اقرأ أيضاً

We investigate the enrichment patterns of several delivery scenarios of the volatiles to the atmospheres of ice giants, having in mind that the only well constrained determination made remotely, i.e. the carbon abundance measurement, suggests that th eir envelopes possess highly supersolar metallicities, i.e. close to two orders of magnitude above that of the protosolar nebula. In the framework of the core accretion model, only the delivery of volatiles in solid forms (amorphous ice, clathrates, pure condensates) to these planets can account for the apparent supersolar metallicity of their envelopes. In contrast, because of the inward drift of icy particles through various snowlines, all mechanisms invoking the delivery of volatiles in vapor forms predict subsolar abundances in the envelopes of Uranus and Neptune. Alternatively, even if the disk instability mechanism remains questionable in our solar system, it might be consistent with the supersolar metallicities observed in Uranus and Neptune, assuming the two planets suffered subsequent erosion of their H-He envelopes. The enrichment patterns derived for each delivery scenario considered should be useful to interpret future in situ measurements by atmospheric entry probes.
Herschel-PACS measurements of the rotational R(0) and R(1) HD lines in the atmospheres of Uranus and Neptune are analyzed in order to derive a D/H ratio with improved precision for both planets. The derivation of the D/H ratio includes also previous measurements of the R(2) line by the Short Wavelength Spectrometer on board the Infrared Space Observatory (ISO). The available spectroscopic line information of the three rotational transitions is discussed and applied in the radiative transfer calculations. The best simultaneous fit of all three lines requires only a minor departure from the Spitzer temperature profile of Uranus and a departure limited to 2K from the Voyager temperature profile of Neptune (both around the tropopause). The resulting and remarkably similar D/H ratios for Uranus and Neptune are found to be (4.4$pm$0.4)$times10^{-5}$ and (4.1$pm$0.4)$times10^{-5}$ respectively. Although the deuterium enrichment in both atmospheres compared to the protosolar value is confirmed, it is found to be lower compared to previous analysis. Using the interior models of Podolak et al. (1995), Helled et al. (2011) and Nettelmann et al. (2013), and assuming that complete mixing of the atmosphere and interior occured during the planets history, we derive a D/H in protoplanetary ices between (5.75--7.0)$times10^{-5}$ for Uranus and between (5.1--7.7)$times10^{-5}$ for Neptune. Conversely, adopting a cometary D/H for the protoplanetary ices between (15-30)$times10^{-5}$, we constrain the interior models of both planets to have an ice mass fraction of 14-32%, i.e. that the two planets are rock-dominated.
Uranus and Neptune, and their diverse satellite and ring systems, represent the least explored environments of our Solar System, and yet may provide the archetype for the most common outcome of planetary formation throughout our galaxy. Ice Giants wi ll be the last remaining class of Solar System planet to have a dedicated orbital explorer, and international efforts are under way to realise such an ambitious mission in the coming decades. In 2019, the European Space Agency released a call for scientific themes for its strategic science planning process for the 2030s and 2040s, known as Voyage 2050. We used this opportunity to review our present-day knowledge of the Uranus and Neptune systems, producing a revised and updated set of scientific questions and motivations for their exploration. This review article describes how such a mission could explore their origins, ice-rich interiors, dynamic atmospheres, unique magnetospheres, and myriad icy satellites, to address questions at the heart of modern planetary science. These two worlds are superb examples of how planets with shared origins can exhibit remarkably different evolutionary paths: Neptune as the archetype for Ice Giants, whereas Uranus may be atypical. Exploring Uranus natural satellites and Neptunes captured moon Triton could reveal how Ocean Worlds form and remain active, redefining the extent of the habitable zone in our Solar System. For these reasons and more, we advocate that an Ice Giant System explorer should become a strategic cornerstone mission within ESAs Voyage 2050 programme, in partnership with international collaborators, and targeting launch opportunities in the early 2030s.
90 - J. Szulagyi , B. Ercolano 2020
We calculated hydrogen recombination line luminosities (H-$alpha$, Paschen-$beta$ and Brackett-$gamma$) from three dimensional thermo-hydrodynamical simulations of forming planets from 1 to 10 Jupiter-masses. We explored various opacities to estimate the line emissions with extinction in each cases assuming boundary layer accretion. When realistic opacities are considered, only lines from planets $ge$10 Jupiter-mass can be detected with current instrumentation, highlighting that from most planets one cannot expect detectable emission. This might explain the very low detection rate of H-$alpha$ from forming planets from observations. While the line emission comes from both the forming planet and its circumplanetary disk, we found that only the disk component could be detected due to extinction. We examined the line variability as well, and found that it is higher for higher mass planets. Furthermore, we determine for the first time, the parametric relationship between the mass of the planet and the luminosity of the hydrogen recombination lines, as well as the equation between the accretion luminosity and hydrogen recombination line luminosities.
The ice giants Uranus and Neptune are the least understood class of planets in our solar system but the most frequently observed type of exoplanets. Presumed to have a small rocky core, a deep interior comprising ~70% heavy elements surrounded by a m ore dilute outer envelope of H2 and He, Uranus and Neptune are fundamentally different from the better-explored gas giants Jupiter and Saturn. Because of the lack of dedicated exploration missions, our knowledge of the composition and atmospheric processes of these distant worlds is primarily derived from remote sensing from Earth-based observatories and space telescopes. As a result, Uranuss and Neptunes physical and atmospheric properties remain poorly constrained and their roles in the evolution of the Solar System not well understood. Exploration of an ice giant system is therefore a high-priority science objective as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. Here we describe the main scientific goals to be addressed by a future in situ exploration of an ice giant. An atmospheric entry probe targeting the 10-bar level, about 5 scale heights beneath the tropopause, would yield insight into two broad themes: i) the formation history of the ice giants and, in a broader extent, that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. In addition, possible mission concepts and partnerships are presented, and a strawman ice-giant probe payload is described. An ice-giant atmospheric probe could represent a significant ESA contribution to a future NASA ice-giant flagship mission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا