ﻻ يوجد ملخص باللغة العربية
This document supplements the release of the Planck 2018 CMB lensing pipeline, now made publicly available. It collects calculations relevant to curved-sky separable quadratic estimators in the spin-weight, position-space correlation function formalism, including analytic calculations of estimator responses and Gaussian noise biases between arbitrary pairs of quadratic estimators. It also contains the derivation of optimal, joint gradient and curl mode quadratic estimators for parametrized anisotropy of arbitrary spin.
We compute the covariant three-point function near horizon-crossing for a system of slowly-rolling scalar fields during an inflationary epoch, allowing for an arbitrary field-space metric. We show explicitly how to compute its subsequent evolution us
We construct the largest curved-sky galaxy weak lensing mass map to date from the DES first-year (DES Y1) data. The map, about 10 times larger than previous work, is constructed over a contiguous $approx1,500 $deg$^2$, covering a comoving volume of $
We present reconstructed convergence maps, textit{mass maps}, from the Dark Energy Survey (DES) third year (Y3) weak gravitational lensing data set. The mass maps are weighted projections of the density field (primarily dark matter) in the foreground
We extend the transport framework for numerically evaluating the power spectrum and bispectrum in multi-field inflation to the case of a curved field-space metric. This method naturally accounts for all sub- and super-horizon tree level effects, incl
We consider the benefits of measuring cosmic statistical anisotropy from redshift-space correlators of the galaxy number density fluctuation and the peculiar velocity field without adopting the plane-parallel (PP) approximation. Since the correlators