ﻻ يوجد ملخص باللغة العربية
In a classic transactional distributed database management system (DBMS), write transactions invariably synchronize with a coordinator before final commitment. While enforcing serializability, this model has long been criticized for not satisfying the applications availability requirements. When entering the era of Internet of Things (IoT), this problem has become more severe, as an increasing number of applications call for the capability of hybrid transactional and analytical processing (HTAP), where aggregation constraints need to be enforced as part of transactions. Current systems work around this by creating escrows, allowing occasional overshoots of constraints, which are handled via compensating application logic. The WiSer DBMS targets consistency with availability, by splitting the database commit into two steps. First, a PROMISE step that corresponds to what humans are used to as commitment, and runs without talking to a coordinator. Second, a SERIALIZE step, that fixes transactions positions in the serializable order, via a consensus procedure. We achieve this split via a novel data representation that embeds read-sets into transaction deltas, and serialization sequence numbers into table rows. WiSer does no sharding (all nodes can run transactions that modify the entire database), and yet enforces aggregation constraints. Both readwrite conflicts and aggregation constraint violations are resolved lazily in the serialized data. WiSer also covers node joins and departures as database tables, thus simplifying correctness and failure handling. We present the design of WiSer as well as experiments suggesting this approach has promise.
Recently, the database management system (DBMS) community has witnessed the power of machine learning (ML) solutions for DBMS tasks. Despite their promising performance, these existing solutions can hardly be considered satisfactory. First, these ML-
Programmable Logic Controllers (PLCs) execute critical control software that drives Industrial Automation and Control Systems (IACS). PLCs can become easy targets for cyber-adversaries as they are resource-constrained and are usually built using lega
Cardinality estimation (CardEst) plays a significant role in generating high-quality query plans for a query optimizer in DBMS. In the last decade, an increasing number of advanced CardEst methods (especially ML-based) have been proposed with outstan
In this paper, we propose a radical new approach for scale-out distributed DBMSs. Instead of hard-baking an architectural model, such as a shared-nothing architecture, into the distributed DBMS design, we aim for a new class of so-called architecture
Machine learning (ML) has proven itself in high-value web applications such as search ranking and is emerging as a powerful tool in a much broader range of enterprise scenarios including voice recognition and conversational understanding for customer