ترغب بنشر مسار تعليمي؟ اضغط هنا

Emission Signatures from Sub-parsec Binary Supermassive Black Holes III: Comparison of Models with Observations

92   0   0.0 ( 0 )
 نشر من قبل Tamara Bogdanovic
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method for comparing the H$beta$ emission-line profiles of observed supermassive black hole (SBHB) candidates and models of sub-parsec SBHBs in circumbinary disks. Using the approach based on principal component analysis we infer the values of the binary parameters for the spectroscopic SBHB candidates and evaluate the parameter degeneracies, representative of the uncertainties intrinsic to such measurements. We find that as a population, the SBHB candidates favor the average value of the semimajor axis corresponding to $log(a/M) approx 4.20pm 0.42$ and comparable mass ratios, $q>0.5$. If the SBHB candidates considered are true binaries, this result would suggest that there is a physical process that allows initially unequal mass systems to evolve toward comparable mass ratios (e.g., accretion that occurs preferentially onto the smaller of the black holes) or point to some, yet unspecified, selection bias. Our method also indicates that the SBHB candidates equally favor configurations in which the mini-disks are coplanar or misaligned with the binary orbital plane. If confirmed for true SBHBs, this finding would indicate the presence of a physical mechanism that maintains misalignment of the mini-disks down to sub-parsec binary separations (e.g., precession driven by gravitational torques). The probability distributions of the SBHB parameters inferred for the observed SBHB candidates and our control group of AGNs are statistically indistinguishable, implying that this method can in principle be used to interpret the observed emission-line profiles once a sample of confirmed SBHBs is available but cannot be used as a conclusive test of binarity.


قيم البحث

اقرأ أيضاً

86 - Khai Nguyen 2018
We present an improved semi-analytic model for calculation of the broad optical emission-line signatures from sub-parsec supermassive black hole binaries (SBHBs) in circumbinary disks. The second-generation model improves upon the treatment of radiat ive transfer by taking into account the effect of the radiation driven accretion disk wind on the properties of the emission-line profiles. Analysis of 42.5 million modeled emission-line profiles shows that correlations between the profile properties and SBHB parameters identified in the first-generation model are preserved, indicating that their diagnostic power is not diminished. The profile shapes are a more sensitive measure of the binary orbital separation and the degree of alignment of the black hole mini-disks, and are less sensitive to the SBHB mass ratio and orbital eccentricity. We also find that modeled profile shapes are more compatible with the observed sample of SBHB candidates than with our control sample of regular AGNs. Furthermore, if the observed sample of SBHBs is made up of genuine binaries, it must include compact systems with comparable masses, and misaligned mini-disks. We note that the model described in this paper can be used to interpret the observed emission-line profiles once a sample of confirmed SBHBs is available but cannot be used to prove that the observed SBHB candidates are true binaries.
We present analysis of Chandra X-ray observations of seven quasars that were identified as candidate sub-parsec binary supermassive black hole (SMBH) systems in the Catalina Real-Time Transient Survey (CRTS) based on apparent periodicity in their opt ical light curves. Simulations predict close-separation accreting SMBH binaries will have different X-ray spectra than single accreting SMBHs, including harder or softer X-ray spectra, ripple-like profiles in the Fe K-$alpha$ line, and distinct peaks in the spectrum due to the separation of the accretion disk into a circumbinary disk and mini-disks around each SMBH. We obtained Chandra observations to test these models and assess whether these quasars could contain binary SMBHs. We instead find that the quasar spectra are all well fit by simple absorbed power law models, with the rest frame 2-10 keV photon indices, $Gamma$, and the X-ray-to-optical power slopes, $alpha_{rm OX}$, indistinguishable from the larger quasar population. This may indicate that these seven quasars are not truly sub-parsec binary SMBH systems, or it may simply reflect that our sample size was too small to robustly detect any differences. Alternatively, the X-ray spectral changes might only be evident at higher energies than probed by Chandra. Given the available models and current data, no firm conclusions are drawn. These observations will help motivate and direct further work on theoretical models of binary SMBH systems, such as modeling systems with thinner accretion disks and larger binary separations.
We present the first fully relativistic prediction of the electromagnetic emission from the surrounding gas of a supermassive binary black hole system approaching merger. Using a ray-tracing code to post-process data from a general relativistic 3-d M HD simulation, we generate images and spectra, and analyze the viewing angle dependence of the light emitted. When the accretion rate is relatively high, the circumbinary disk, accretion streams, and mini-disks combine to emit light in the UV/EUV bands. We posit a thermal Compton hard X-ray spectrum for coronal emission; at high accretion rates, it is almost entirely produced in the mini-disks, but at lower accretion rates it is the primary radiation mechanism in the mini-disks and accretion streams as well. Due to relativistic beaming and gravitational lensing, the angular distribution of the power radiated is strongly anisotropic, especially near the equatorial plane.
232 - Bryan J. Pflueger 2018
Motivated by observational searches for sub-parsec supermassive black hole binaries (SBHBs) we develop a modular analytic model to determine the likelihood for detection of SBHBs by ongoing spectroscopic surveys. The model combines the parametrized r ate of orbital evolution of SBHBs in circumbinary disks with the selection effects of spectroscopic surveys and returns a multivariate likelihood for SBHB detection. Based on this model we find that in order to evolve into the detection window of the spectroscopic searches from larger separations in less than a Hubble time, $10^8M_odot$ SBHBs must, on average, experience angular momentum transport faster than that provided by a disk with accretion rate $0.06,dot{M}_E$. Spectroscopic searches with yearly cadence of observations are in principle sensitive to binaries with orbital separations $< {rm few}times 10^4, r_g$ ($r_g = GM/c^2$ and $M$ is the binary mass), and for every one SBHB in this range there should be over 200 more gravitationally bound systems with similar properties, at larger separations. Furthermore, if spectra of all SBHBs in this separation range exhibit the AGN-like emission lines utilized by spectroscopic searches, the projection factors imply five undetected binaries for each observed $10^8M_odot$ SBHB with mass ratio $0.3$ and orbital separation $10^4,r_g$ (and more if some fraction of SBHBs is inactive). This model can be used to infer the most likely orbital parameters for observed SBHB candidates and to provide constraints on the rate of orbital evolution of SBHBs, if observed candidates are shown to be genuine binaries.
116 - Chang-Shuo Yan 2015
Supermassive binary black holes (BBHs) are unavoidable products of galaxy mergers and are expected to exist in the cores of many quasars. Great effort has been made during the past several decades to search for BBHs among quasars; however, observatio nal evidence for BBHs remains elusive and ambiguous, which is difficult to reconcile with theoretical expectations. In this paper, we show that the distinct optical-to-UV spectrum of Mrk 231 can be well interpreted as emission from accretion flows onto a BBH, with a semimajor axis of ~590AU and an orbital period of ~1.2 year. The flat optical and UV continua are mainly emitted from a circumbinary disk and a mini-disk around the secondary black hole (BH), respectively; and the observed sharp drop off and flux deficit at wavelength lambda ~ 4000-2500 Angstrom is due to a gap (or hole) opened by the secondary BH migrating within the circumbinary disk. If confirmed by future observations, this BBH will provide a unique laboratory to study the interplay between BBHs and accretion flows onto them. Our result also demonstrates a new method to find sub-parsec scale BBHs by searching for deficits in the optical-to-UV continuum among the spectra of quasars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا