ﻻ يوجد ملخص باللغة العربية
Superfluid $^3$He under nanoscale confinement has generated significant interest due to the rich spectrum of phases with complex order parameters that may be stabilized. Experiments have uncovered a variety of interesting phenomena, but a complete picture of superfluid $^3$He under confinement has remained elusive. Here, we present phase diagrams of superfluid $^3$He under varying degrees of uniaxial confinement, over a wide range of pressures, which elucidate the progressive stability of both the $A$-phase, as well as a growing region of stable pair density wave (PDW) state.
Recent advances in experiment and theory suggest that superfluid $^3$He under planar confinement may form a pair-density wave (PDW) whereby superfluid and crystalline orders coexist. While a natural candidate for this phase is a unidirectional stripe
Fulde, Ferrell, Larkin, and Ovchinnikov (FFLO) predicted inhomogeneous superconducting and superfluid ground states, spontaneously breaking translation symmetries. In this Letter, we demonstrate that the transition from the FFLO to the normal state a
The specific heat of superfluid $^{3}$He, disordered by a silica aerogel, is found to have a sharp discontinuity marking the thermodynamic transition to superfluidity at a temperature reduced from that of bulk $^{3}$He. The magnitude of the discontin
We report that spin supercurrents in magnetic superconductors and superconductor/ferromagnetic insulator bilayers can induce the Dzyaloshinskii-Moriya interaction which strength is proportional to the superconducting order parameter amplitude. This e
We consider fermionic states bound on domain walls in a Weyl superfluid $^3$He-A and on interfaces between $^3$He-A and a fully gapped topological superfluid $^3$He-B. We demonstrate that in both cases fermionic spectrum contains Fermi arcs which are