ﻻ يوجد ملخص باللغة العربية
The QCD axion is one of the most appealing candidates for the dark matter in the Universe. In this article, we discuss the possibility to predict the axion mass in the context of a simple renormalizable grand unified theory where the Peccei-Quinn scale is determined by the unification scale. In this framework, the axion mass is predicted to be in the range $m_a simeq (3 - 13) times 10^{-9} rm{eV}$. We study the axion phenomenology and find that the ABRACADABRA and CASPEr-Electric experiments will be able to fully probe this mass window.
We discuss the possibility to predict the QCD axion mass in the context of grand unified theories. We investigate the implementation of the DFSZ mechanism in the context of renormalizable SU(5) theories. In the simplest theory, the axion mass can be
We investigate the possibility to find an ultraviolet completion of the simple extensions of the Standard Model where baryon number is a local symmetry. In the context of such theories one can understand the spontaneous breaking of baryon number at t
Axion models with generation-dependent Peccei-Quinn charges can lead to flavor-changing neutral currents, thus motivating QCD axion searches at precision flavor experiments. We rigorously derive limits on the most general effective flavor-violating c
We propose a simple renormalizable grand unified theory based on the $SU(5)$ gauge symmetry where the neutrino masses are generated at the quantum level through the Zee mechanism. In this model the same Higgs needed to correct the mass relation betwe
We propose a novel approach of probing grand unification through precise measurements on the Higgs Yukawa couplings at the LHC. This idea is well motivated by the appearance of effective operators not suppressed by the mass scale of unification $M_{r