ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry in stationary and uniformly-rotating solutions of active scalar equations

112   0   0.0 ( 0 )
 نشر من قبل Javier G\\'omez-Serrano
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the radial symmetry properties of stationary and uniformly-rotating solutions of the 2D Euler and gSQG equations, both in the smooth setting and the patch setting. For the 2D Euler equation, we show that any smooth stationary solution with compactly supported and nonnegative vorticity must be radial, without any assumptions on the connectedness of the support or the level sets. In the patch setting, for the 2D Euler equation we show that every uniformly-rotating patch $D$ with angular velocity $Omega leq 0$ or $Omegageq frac{1}{2}$ must be radial, where both bounds are sharp. For the gSQG equation we obtain a similar symmetry result for $Omegaleq 0$ or $Omegageq Omega_alpha$ (with the bounds being sharp), under the additional assumption that the patch is simply-connected. These results settle several open questions in [T. Hmidi, J. Evol. Equ., 15(4): 801-816, 2015] and [F. de la Hoz, Z. Hassainia, T. Hmidi, and J. Mateu, Anal. PDE, 9(7):1609-1670, 2016] on uniformly-rotating patches. Along the way, we close a question on overdetermined problems for the fractional Laplacian [R. Choksi, R. Neumayer, and I. Topaloglu, Arxiv preprint arXiv:1810.08304, 2018, Remark 1.4], which may be of independent interest. The main new ideas come from a calculus of variations point of view.

قيم البحث

اقرأ أيضاً

In this paper, we construct new, uniformly-rotating solutions of the vortex sheet equation bifurcating from circles with constant vorticity amplitude. The proof is accomplished via a Lyapunov-Schmidt reduction and a second order expansion of the reduced system.
In this paper, we show that the only solution of the vortex sheet equation, either stationary or uniformly rotating with negative angular velocity $Omega$, such that it has positive vorticity and is concentrated in a finite disjoint union of smooth c urves with finite length is the trivial one: constant vorticity amplitude supported on a union of nested, concentric circles. The proof follows a desingularization argument and a calculus of variations flavor.
By applying implicit function theorem on contour dynamics, we prove the existence of co-rotating and travelling patch solutions for both Euler and the generalized surface quasi-geostrophic equation. The solutions obtained constitute a desingularizati on of points vortices when the size of patch support vanishes. In particular, solutions constructed in this paper consist of doubly connected components, which is essentially different from all known results.
For any $hin(1,2]$, we give an explicit construction of a compactly supported, uniformly continuous, and (weakly) divergence-free velocity field in $mathbb{R}^2$ that weakly advects a measure whose support is initially the origin but for positive tim es has Hausdorff dimension $h$. These velocities are uniformly continuous in space-time and compactly supported, locally Lipschitz except at one point and satisfy the conditions for the existence and uniqueness of a Regular Lagrangian Flow in the sense of Di Perna and Lions theory. We then construct active scalar systems in $mathbb{R}^2$ and $mathbb{R}^3$ with measure-valued solutions whose initial support has co-dimension 2 but such that at positive times it only has co-dimension 1. The associated velocities are divergence free, compactly supported, continuous, and sufficiently regular to admit unique Regular Lagrangian Flows. This is in part motivated by the investigation of dimension conservation for the support of measure-valued solutions to active scalar systems. This question occurs in the study of vortex filaments in the three-dimensional Euler equations.
81 - Jaemin Park 2020
In this paper, we derive some quantitative estimates for uniformly-rotating vortex patches. We prove that if a non-radial simply-connected patch $D$ is uniformly-rotating with small angular velocity $0 < Omega ll 1$, then the outmost point of the pat ch must be far from the center of rotation, with distance at least of order $Omega^{-1/2}$. For $m$-fold symmetric simply-connected rotating patches, we show that their angular velocity must be close to $frac{1}{2}$ for $mgg 1$ with the difference at most $O(1/m)$, and also obtain estimates on $L^{infty}$ norm of the polar graph which parametrizes the boundary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا