ﻻ يوجد ملخص باللغة العربية
In this paper, we study the radial symmetry properties of stationary and uniformly-rotating solutions of the 2D Euler and gSQG equations, both in the smooth setting and the patch setting. For the 2D Euler equation, we show that any smooth stationary solution with compactly supported and nonnegative vorticity must be radial, without any assumptions on the connectedness of the support or the level sets. In the patch setting, for the 2D Euler equation we show that every uniformly-rotating patch $D$ with angular velocity $Omega leq 0$ or $Omegageq frac{1}{2}$ must be radial, where both bounds are sharp. For the gSQG equation we obtain a similar symmetry result for $Omegaleq 0$ or $Omegageq Omega_alpha$ (with the bounds being sharp), under the additional assumption that the patch is simply-connected. These results settle several open questions in [T. Hmidi, J. Evol. Equ., 15(4): 801-816, 2015] and [F. de la Hoz, Z. Hassainia, T. Hmidi, and J. Mateu, Anal. PDE, 9(7):1609-1670, 2016] on uniformly-rotating patches. Along the way, we close a question on overdetermined problems for the fractional Laplacian [R. Choksi, R. Neumayer, and I. Topaloglu, Arxiv preprint arXiv:1810.08304, 2018, Remark 1.4], which may be of independent interest. The main new ideas come from a calculus of variations point of view.
In this paper, we construct new, uniformly-rotating solutions of the vortex sheet equation bifurcating from circles with constant vorticity amplitude. The proof is accomplished via a Lyapunov-Schmidt reduction and a second order expansion of the reduced system.
In this paper, we show that the only solution of the vortex sheet equation, either stationary or uniformly rotating with negative angular velocity $Omega$, such that it has positive vorticity and is concentrated in a finite disjoint union of smooth c
By applying implicit function theorem on contour dynamics, we prove the existence of co-rotating and travelling patch solutions for both Euler and the generalized surface quasi-geostrophic equation. The solutions obtained constitute a desingularizati
For any $hin(1,2]$, we give an explicit construction of a compactly supported, uniformly continuous, and (weakly) divergence-free velocity field in $mathbb{R}^2$ that weakly advects a measure whose support is initially the origin but for positive tim
In this paper, we derive some quantitative estimates for uniformly-rotating vortex patches. We prove that if a non-radial simply-connected patch $D$ is uniformly-rotating with small angular velocity $0 < Omega ll 1$, then the outmost point of the pat