ترغب بنشر مسار تعليمي؟ اضغط هنا

Star-formation rates of two GRB host galaxies at z~2 and a [CII] deficit observed with ALMA

109   0   0.0 ( 0 )
 نشر من قبل Tetsuya Hashimoto
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Event rate of long Gamma-Ray Bursts (GRBs) is expected to be an useful tracer of the cosmic star-formation history. For this purpose, it is necessary to understand what kind of star formations/galaxies are traced by GRBs. Here we report rest-frame far-infrared (FIR) continuum detections of GRB 070521 and 080207 host galaxies at $zsim2$ with ALMA band 8 and 9. The FIR photometries provide the reliable star-formation rates (SFRs), because FIR emission is free from dust extinction and possible radio contamination from long-lived afterglows of GRBs. The spectral energy distribution fittings indicate 49.85$^{+72.33}_{-2.86}$ and 123.4$^{+25.19}_{-21.78}$ $M_{odot}$ yr$^{-1}$ for the 070521 and 080207 hosts, respectively. The derived SFRs place them on the lq lq main sequencerq rq of normal star-forming galaxies at $zsim2$. The derived SFRs are significantly lower than that of radio observations. It is inferred that the observed radio fluxes in a previous study are contaminated by the afterglows. ALMA marginally detected [C~{sc ii}],158,$mu$m emission line from the GRB 080207 host galaxy with S/N $sim$ 4. This is the first detection of [C~{sc ii}],158,$mu$m of a GRB host at $z>2$, and the second detection among known GRBs. The luminosity ratio of [C~{sc~ii}],158$mu$m to FIR is 7.5$times 10^{-4}$, which is one of the smallest values among galaxies at $zsim 1-2$ with the same FIR luminosity. The lq lq [C~{sc ii}] deficitrq rq could be a new physical property to characterise GRB hosts at $zsim1-2$. Possible parameters controlling the deficit include the metallicity, initial mass function, and gas density.

قيم البحث

اقرأ أيضاً

Gamma-Ray Bursts (GRBs) can be a promising tracer of cosmic star-formation rate history (CSFRH). In order to reveal the CSFRH using GRBs, it is important to understand whether they are biased tracers or not. For this purpose, it is crucial to underst and properties of GRB host galaxies, in comparison to field galaxies. In this work, we report ALMA far-infrared (FIR) observations of six $zsim2$ IR-bright GRB host galaxies, which are selected for the brightness in IR. Among them, four host galaxies are detected for the first time in the rest-frame FIR. In addition to the ALMA data, we collected multi-wavelength data from previous studies for the six GRB host galaxies. Spectral energy distribution (SED) fitting analyses were performed with texttt{CIGALE} to investigate physical properties of the host galaxies, and to test whether active galactic nucleus (AGN) and radio components are required or not. Our results indicate that the best-fit templates of five GRB host galaxies do not require an AGN component, suggesting the absence of AGNs. One GRB host galaxy, 080207, shows a very small AGN contribution. While derived stellar masses of the three host galaxies are mostly consistent with those in previous studies, interestingly the value of star-formation rates (SFRs) of all six GRB hosts are inconsistent with previous studies. Our results indicate the importance of rest-frame FIR observations to correctly estimate SFRs by covering thermal emission from cold dust heated by star formation.
We present high resolution (0.3) Atacama Large Millimeter Array (ALMA) 870um imaging of five z~1.5-4.5 X-ray detected AGN with luminosities of L(2-8keV)>10^42 erg/s. These data provide a >~20x improvement in spatial resolution over single-dish rest-f rame FIR measurements. The sub-millimetre emission is extended on scales of FWHM~0.2-0.5, corresponding to physical sizes of 1-3 kpc (median value of 1.8 kpc). These sizes are comparable to the majority of z=1-5 sub-millimetre galaxies (SMGs) with equivalent ALMA measurements. In combination with spectral energy distribution analyses, we attribute this rest-frame far-infrared (FIR) emission to dust heated by star formation. The implied star-formation rate surface densities are ~20-200 Mo/yr/kpc^2, which are consistent with SMGs of comparable FIR luminosities (i.e., L(IR)~[1-5]x10^(12)Lo). Although limited by a small sample of AGN, which all have high FIR luminosities, our study suggests that the kpc-scale spatial distribution and surface density of star formation in high-redshift star-forming galaxies is the same irrespective of the presence of X-ray detected AGN.
Star formation rate (SFR) measurements at z>4 have relied mostly on rest-frame far-ultraviolet (FUV) observations. The corrections for dust attenuation based on IRX-$beta$ relation are highly uncertain and are still debated in the literature. Hence, rest-frame far-infrared (FIR) observations are necessary to constrain the dust-obscured component of the SFR. In this paper, we exploit the rest-frame FIR continuum observations collected by the ALMA Large Program to INvestigate [CII] at Early times (ALPINE) to directly constrain the obscured SFR in galaxies at 4.4<z<5.9. We use stacks of continuum images to measure average infrared (IR) luminosities taking into account both detected and undetected sources. Based on these measurements, we measure the position of the main sequence of star-forming galaxies and the specific SFR (sSFR) at $zsim4.5$ and $zsim5.5$. We find that the main sequence and sSFR do not evolve significantly between $zsim4.5$ and $zsim5.5$, as opposed to lower redshifts. We develop a method to derive the obscured SFR density (SFRD) using the stellar masses or FUV-magnitudes as a proxy of FIR fluxes measured on the stacks and combining them with the galaxy stellar mass functions and FUV luminosity functions from the literature. We obtain consistent results independent of the chosen proxy. We find that the obscured fraction of SFRD is decreasing with increasing redshift but even at $zsim5.5$ it constitutes around 61% of the total SFRD.
We present a study of the [CII] 158micron line and underlying far-infrared (FIR) continuum emission of 27 quasar host galaxies at z~6, traced by the Atacama Large Millimeter/submillimeter Array at a spatial resolution of ~1 physical kpc. The [CII] em ission in the bright, central regions of the quasars have sizes of 1.0-4.8kpc. The dust continuum emission is typically more compact than [CII]. We find that 13/27 quasars (approximately one-half) have companion galaxies in the field, at projected separations of 3-90kpc. The position of dust emission and the Gaia-corrected positions of the central accreting black holes are cospatial (typical offsets <0.1). This suggests that the central black holes are located at the bottom of the gravitational wells of the dark matter halos in which the z>6 quasar hosts reside. Some outliers with offsets of ~500pc can be linked to disturbed morphologies, most likely due to ongoing or recent mergers. We find no correlation between the central brightness of the FIR emission and the bolometric luminosity of the accreting black hole. The FIR-derived star-formation rate densities (SFRDs) in the host galaxies peak at the galaxies centers, at typical values between 100 and 1000 M_sun/yr/kpc^2. These values are below the Eddington limit for star formation, but similar to those found in local ultraluminous infrared galaxies. The SFRDs drop toward larger radii by an order of magnitude. Likewise, the [CII]/FIR luminosity ratios of the quasar hosts are lowest in their centers (few x10^-4) and increase by a factor of a few toward the galaxies outskirts, consistent with resolved studies of lower-redshift sources.
We present dust attenuation properties of spectroscopically confirmed star forming galaxies on the main sequence at a redshift of ~4.4-5.8. Our analyses are based on the far infrared continuum observations of 118 galaxies at rest-frame 158{mu}m obtai ned with the Atacama Large Millimeter Array (ALMA) Large Program to INvestigate [CII] at Early times (ALPINE). We study the connection between the ultraviolet (UV) spectral slope ($beta$), stellar mass (M_*), and infrared excess (IRX=L_IR/L_UV). Twenty-three galaxies are individually detected in the continuum at >3.5 sigma significance. We perform a stacking analysis using both detections and nondetections to study the average dust attenuation properties at z~4.4-5.8. The individual detections and stacks show that the IRX-$beta$ relation at z~5 is consistent with a steeper dust attenuation curve than typically found at lower redshifts (z<4). The attenuation curve is similar to or even steeper than that of the extinction curve of the Small Magellanic Cloud (SMC). This systematic change of the IRX-$beta$ relation as a function of redshift suggests an evolution of dust attenuation properties at z>4. Similarly, we find that our galaxies have lower IRX values, up to 1dex on average, at a fixed mass compared to previously studied IRX-M_* relations at z<4, albeit with significant scatter. This implies a lower obscured fraction of star formation than at lower redshifts. Our results suggest that dust properties of UV-selected star forming galaxies at z>4 are characterised by (i) a steeper attenuation curve than at z<4, and (ii) a rapidly decreasing dust obscured fraction of star formation as a function of redshift. Nevertheless, even among this UV-selected sample, massive galaxies (log M_*/$M_odot$>10) at z~5-6 already exhibit an obscured fraction of star formation of ~45%, indicating a rapid build-up of dust during the epoch of reionization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا