ترغب بنشر مسار تعليمي؟ اضغط هنا

First detection of $A$--$X$ (0,0) bands of interstellar C$_2$ and CN

104   0   0.0 ( 0 )
 نشر من قبل Satoshi Hamano
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first detection of C$_2$ $A^1Pi_u$--$X^1Sigma_g^+$ (0,0) and CN $A^2Pi_u$--$X^2Sigma^+$ (0,0) absorption bands in the interstellar medium. The detection was made using the near-infrared (0.91--1.35 $mu$m) high-resolution ($R=20,000$ and 68,000) spectra of Cygnus OB2 No.,12 collected with the WINERED spectrograph mounted on the 1.3 m Araki telescope. The $A$--$X$ (1,0) bands of C$_2$ and CN were detected simultaneously. These near-infrared bands have larger oscillator strengths, compared with the $A$--$X$ (2,0) bands of C$_2$ and CN in the optical. In the spectrum of the C$_2$ (0,0) band with $R=68,000$, three velocity components in the line of sight could be resolved and the lines were detected up to high rotational levels ($Jsim20$). By analyzing the rotational distribution of C$_2$, we could estimate the kinetic temperature and gas density of the clouds with high accuracy. Furthermore, we marginally detected weak lines of $^{12}$C$^{13}$C for the first time in the interstellar medium. Assuming that the rotational distribution and the oscillator strengths of the relevant transitions of $^{12}$C$_2$ and $^{12}$C$^{13}$C are the same, the carbon isotope ratio was estimated to be $^{12}text{C}/^{13}text{C}=50$--100, which is consistent with the ratio in the local interstellar medium. We also calculated the oscillator strength ratio of the C$_2$ (0,0) and (1,0) bands from the observed band strengths. Unfortunately, our result could not discern theoretical and experimental results because of the uncertainties. High-resolution data to resolve the velocity components will be necessary for both bands in order to put stronger constraints on the oscillator strength ratios.

قيم البحث

اقرأ أيضاً

Deuterium fractionation processes in the interstellar medium (ISM) have been shown to be highly efficient in the family of nitrogen hydrides. To date, observations were limited to ammonia (NH$_2$D, NHD$_2$, ND$_3$) and imidogen radical (ND) isotopolo gues. We want to explore the high frequency windows offered by the emph{Herschel Space Observatory} to search for deuterated forms of amidogen radical NH$_2$ and to compare the observations against the predictions of our comprehensive gas-grain chemical model. Making use of the new molecular spectroscopy data recently obtained at high frequencies for NHD and ND$_2$, both isotopologues have been searched for in the spectral survey towards the class 0 IRAS 16293-2422, a source in which NH$_3$, NH and their deuterated variants have been previously detected. We used the observations carried out with HIFI (Heterodyne Instrument for the Far Infrared) in the framework of the key program Chemical Herschel surveys of star forming regions (CHESS). We report the first detection of interstellar NHD and ND$_2$. Both species are observed in absorption against the continuum of the protostar. From the analysis of their hyperfine structure, accurate excitation temperature and column density values have been determined. The latter were combined with the column density of the parent species NH$_2$ to derive the deuterium fractionation in amidogen. The amidogen D/H ratio measured in the low-mass protostar IRAS 16293-2422 is comparable to the one derived for the related species imidogen and much higher than that observed for ammonia. Additional observations of these species will give more insights into the mechanism of ammonia formation and deuteration in the ISM. We finally indicate the current possibilities to further explore these species at submillimeter wavelengths.
Using radio observations with the Green Bank Telescope, evidence has now been found for a second five-membered ring in the dense cloud Taurus Molecular Cloud-1 (TMC-1). Based on additional observations of an ongoing, large-scale, high-sensitivity spe ctral line survey (GOTHAM) at centimeter wavelengths toward this source, we have used a combination of spectral stacking, Markov chain Monte Carlo (MCMC), and matched filtering techniques to detect 2-cyanocyclopentadiene, a low-lying isomer of 1-cyanocyclopentadiene, which was recently discovered there by the same methods. The new observational data also yields a considerably improved detection significance for the more stable isomer and evidence for several individual transitions between 23 - 32 GHz. Through our MCMC analysis, we derive total column densities of $8.3times10^{11}$ and $1.9times10^{11}$ cm$^{-2}$ for 1- and 2-cyanocyclopentadiene respectively, corresponding to a ratio of 4.4(6) favoring the former. The derived abundance ratios point towards a common formation pathway - most likely being cyanation of cyclopentadiene by analogy to benzonitrile.
We present the first detection of gas phase S2H in the Horsehead, a moderately UV-irradiated nebula. This confirms the presence of doubly sulfuretted species in the interstellar medium and opens a new challenge for sulfur chemistry. The observed S2H abundance is ~5x10$^{-11}$, only a factor 4-6 lower than that of the widespread H2S molecule. H2S and S2H are efficiently formed on the UV-irradiated icy grain mantles. We performed ice irradiation experiments to determine the H2S and S2H photodesorption yields. The obtained values are ~1.2x10$^{-3}$ and <1x10$^{-5}$ molecules per incident photon for H2S and S2H, respectively. Our upper limit to the S2H photodesorption yield suggests that photo-desorption is not a competitive mechanism to release the S2H molecules to the gas phase. Other desorption mechanisms such as chemical desorption, cosmic-ray desorption and grain shattering can increase the gaseous S2H abundance to some extent. Alternatively, S2H can be formed via gas phase reactions involving gaseous H2S and the abundant ions S+ and SH+. The detection of S2H in this nebula could be therefore the result of the coexistence of an active grain surface chemistry and gaseous photo-chemistry.
We present an overview of the GOTHAM (GBT Observations of TMC-1: Hunting Aromatic Molecules) Large Program on the Green Bank Telescope. This and a related program were launched to explore the depth and breadth of aromatic chemistry in the interstella r medium at the earliest stages of star formation, following our earlier detection of benzonitrile ($c$-C$_6$H$_5$CN) in TMC-1. In this work, details of the observations, use of archival data, and data reduction strategies are provided. Using these observations, the interstellar detection of propargyl cyanide (HCCCH$_2$CN) is described, as well as the accompanying laboratory spectroscopy. We discuss these results, and the survey project as a whole, in the context of investigating a previously unexplored reservoir of complex, gas-phase molecules in pre-stellar sources. A series of companion papers describe other new astronomical detections and analyses.
In 2015, Campbell et al. (Nature 523, 322) presented spectroscopic laboratory gas phase data for the fullerene cation, C$_{60}^+$, that coincide with reported astronomical spectra of two diffuse interstellar band (DIB) features at 9633 and 9578 AA. I n the following year additional laboratory spectra were linked to three other and weaker DIBs at 9428, 9366, and 9349 AA. The laboratory data were obtained using wavelength-dependent photodissociation spectroscopy of small (up to three) He-tagged C$_{60}^+-$He$_n$ ion complexes, yielding rest wavelengths for the bare C$_{60}^+$ cation by correcting for the He-induced wavelength shifts. Here we present an alternative approach to derive the rest wavelengths of the four most prominent C$_{60}^+$ absorption features, using high resolution laser dissociation spectroscopy of C$_{60}^+$ embedded in ultracold He droplets. Accurate wavelengths of the bare fullerene cation are derived based on linear wavelength shifts recorded for He$_n$C$_{60}^+$ species with $n$ up to 32. A careful analysis of all available data results in precise rest wavelengths (in air) for the four most prominent C$_{60}^+$ bands: 9631.9(1) AA, 9576.7(1) AA, 9427.5(1) AA, and 9364.9(1) AA. The corresponding band widths have been derived and the relative band intensity ratios are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا