ترغب بنشر مسار تعليمي؟ اضغط هنا

Surpassing the rate-transmittance linear bound of quantum key distribution

225   0   0.0 ( 0 )
 نشر من قبل Xiongfeng Ma
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum key distribution (QKD offers a long-term solution to establish information-theoretically secure keys between two distant users. In practice, with a careful characterization of quantum sources and the decoy-state method, measure-device-independent quantum key distribution (MDI-QKD) provides secure key distribution. While short-distance fibre-based QKD has already been available for real-life implementation, the bottleneck of practical QKD lies on the limited transmission distance. Due to photon losses in transmission, it was believed that the key generation rate is bounded by a linear function of the channel transmittance, $O(eta)$, without a quantum repeater, which puts an upper bound on the maximal secure transmission distance. Interestingly, a new phase-encoding MDI-QKD scheme, named twin-field QKD, has been suggested to beat the linear bound, while another variant, named phase-matching quantum key distribution (PM-QKD), has been proven to have a quadratic key-rate improvement, $O(sqrt{eta})$. In reality, however, the intrinsic optical mode mismatch of independent lasers, accompanied by phase fluctuation and drift, impedes the successful experimental implementation of the new schemes. Here, we solve this problem with the assistance of the laser injection technique and the phase post-compensation method. In the experiment, the key rate surpasses the linear key-rate bound via 302 km and 402 km commercial-fibre channels, achieving a key rate over 4 orders of magnitude higher than the existing results in literature. Furthermore, with a 502 km ultralow-loss fibre, our system yields a secret key rate of 0.118 bps. We expect this new type of QKD schemes to become a new standard for future QKD.

قيم البحث

اقرأ أيضاً

A crucial goal for quantum key distribution (QKD) is to transmit unconditionally secure keys over long distances. Previous studies show that the key rate of point-to-point QKD is limited by a secret key rate capacity bound, and higher key rates would require quantum repeaters. In 2018, the seminal twin-field (TF) QKD protocol was proposed to provide a remarkable solution to overcoming the linear secret key capacity bound. This article presents an up-to-date survey on recent developments in this area, including the security proofs of phase-matching QKD and other TF-QKD type protocols, the theoretical examinations of these protocols under realistic conditions, and the recent experimental demonstrations.
62 - Yonggi Jo , Wonmin Son 2016
It is known that measurement-device-independent quantum key distribution (MDI-QKD) provides ultimate security from all types of side-channel attack against detectors at the expense of low key generation rate. Here, we propose MDI-QKD using 3-dimensio nal quantum states and show that the protocol improves the secret key rate under the analysis of mismatched-basis statistics. Specifically, we analyze security of the 3d-MDI-QKD protocol with uncharacterized sources, meaning that the original sources contain unwanted states instead of expected one. We simulate secret key rate of the protocol and identify the regime where the key rate is higher than the protocol with the qubit MDI-QKD.
Device-independent quantum key distribution (DIQKD) exploits the violation of a Bell inequality to extract secure key even if the users devices are untrusted. Currently, all DIQKD protocols suffer from the secret key capacity bound, i.e., the secret key rate scales linearly with the transmittance of two users. Here we propose a heralded DIQKD scheme based on entangled coherent states to improve entangling rates whereby long-distance entanglement is created by single-photon-type interference. The secret key rate of our scheme can significantly outperform the traditional two-photon-type Bell-state measurement scheme and, importantly, surpass the above capacity bound. Our protocol therefore is an important step towards a realization of DIQKD and can be a promising candidate scheme for entanglement swapping in future quantum internet.
Continuous-variable quantum key distribution (CV-QKD) with discrete modulation has received widespread attentions because of its experimental simplicity, lower-cost implementation and ease to multiplex with classical optical communication. Recently, some inspiring numerical methods have been applied to analyse the security of discrete-modulated CV-QKD against collective attacks, which promises to obtain considerable key rate over one hundred kilometers of fiber distance. However, numerical methods require up to ten minutes to calculate a secure key rate one time using a high-performance personal computer, which means that extracting the real-time secure key rate is impossible for discrete-modulated CV-QKD system. Here, we present a neural network model to quickly predict the secure key rate of homodyne detection discrete-modulated CV-QKD with good accuracy based on experimental parameters and experimental results. With the excess noise of about $0.01$, the speed of our method is improved by about seven orders of magnitude compared to that of the conventional numerical method. Our method can be extended to quickly solve complex security key rate calculation of a variety of other unstructured quantum key distribution protocols.
Two-qubit quantum codes have been suggested to obtain better efficiency and higher loss tolerance in quantum key distribution. Here, we propose a two-qubit quantum key distribution protocol based on a mixed basis consisting of two Bell states and two states from the computational basis. All states can be generated from a single entangled photon pair resource by using local operations on only one auxiliary photon. Compared to other schemes it is also possible to deterministically discriminate all states using linear optics. Additionally, our protocol can be implemented with todays technology. When discussing the security of our protocol we find a much improved resistance against certain attacks as compared to the standard BB84 protocol.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا