ﻻ يوجد ملخص باللغة العربية
The most recent high-precision data on spin observables $Sigma$, $T$, $P$, $E$, $F$ and $H$ reported by the CLAS Collaboration together with the previous data on differential cross sections and spin-density-matrix elements reported by the CLAS, A2, GRAAL, SAPHIR and CBELSA/TAPS Collaborations for the reaction $gamma p to omega p$ are analyzed within an effective Lagrangian approach. The reaction amplitude is constructed by considering the $t$-channel $pi$ and $eta$ exchanges, the $s$-channel nucleon and nucleon resonances exchanges, the $u$-channel nucleon exchange and the generalized contact current. The latter accounts effectively for the interaction current and ensures that the full photoproduction amplitude is gauge invariant. It is shown that all the available CLAS data can be satisfactorily described by considering the $N(1520)3/2^-$, $N(1700)3/2^-$, $N(1720)3/2^+$, $N(1860)5/2^+$, $N(1875)3/2^-$, $N(1895)1/2^-$ and $N(2060)5/2^-$ resonances in the $s$-channel. The parameters of these resonances are extracted and compared with those quoted by PDG.
The high-precision cross-section data for the reaction $gamma p to K^{*+}Lambda$ reported by the CLAS Collaboration at the Thomas Jefferson National Accelerator Facility have been analyzed based on an effective Lagrangian approach in the tree-level a
We present calculations of the invariant mass spectra of the $Lambda$p system for the exclusive $p p to K^+ Lambda p$ reaction with the aim of studying the final state interaction between the $Lambda$-hyperon and the proton. The reaction is described
The spin density matrix of the $omega$ has been determined for the reaction $bar{p} p , rightarrow , omega pi^0$ with unpolarized in-flight data measured by the Crystal Barrel LEAR experiment at CERN. The two main decay modes of the $omega$ into $pi^
We investigate the photoproduction of Lambda(1405,1/2^-) = Lambda* off the proton target using the effective Lagrangian in the Born approximation. We observed that, depending on the choice of the K* N Lambda* coupling strength, the total cross sectio
The s-channel annihilation of proton and antiproton into a neutral pion and a real or virtual photon followed by lepton pair emission is studied. Such mechanism is expected to play a role at moderate values of the total energy $sqrt{s}$, when the pio