ﻻ يوجد ملخص باللغة العربية
We present a calibration of the Tip of the Red Giant Branch (TRGB) in the Large Magellanic Cloud (LMC) on the HST/ACS F814W system. We use archival HST observations to derive blending corrections and photometric transformations for two ground-based wide-area imaging surveys of the Magellanic Clouds. We show that these surveys are biased bright by up to ~0.1 mag in the optical due to blending, and that the bias is a function of local stellar density. We correct the LMC TRGB magnitudes from Jang & Lee (2017) and use the geometric distance from Pietrzynski et al. (2019) to obtain an absolute TRGB magnitude of M_F814W=-3.97+/-0.046 mag. Applying this calibration to the TRGB magnitudes from Freedman et al. (2019) in SN Ia hosts yields a value for the Hubble constant of H_0=72.4+/-2.0 km/s/Mpc for their TRGB+SNe Ia distance ladder. The difference in the TRGB calibration and the value of H_0 derived here and by Freedman et al. (2019) primarily results from their overestimate of the LMC extinction, caused by inconsistencies in their different sources of TRGB photometry for the Magellanic Clouds. Using the same source of photometry (OGLE) for both Clouds and applying the aforementioned corrections yields a value for the LMC I-band TRGB extinction that is lower by 0.06 mag, consistent with independent OGLE reddening maps used by us and by Jang & Lee (2017) to calibrate TRGB and determine H_0.
We present a new empirical (JHK) absolute calibration of the tip of the red giant branch (TRGB) in the Large Magellanic Cloud (LMC). We use published data from the extensive emph{Near-Infrared Synoptic Survey} containing 3.5 million stars, of which 6
A zero point calibration of the Red Giant Branch Tip (TRGB) in the $I$-band is determined from OGLE photometry of the Magellanic Clouds (MCs). It is shown that TRGB measurements made in star-forming regions, with concomitantly high quantities of gas
We present a new and independent determination of the local value of the Hubble constant based on a calibration of the Tip of the Red Giant Branch (TRGB) applied to Type Ia supernovae (SNeIa). We find a value of Ho = 69.8 +/- 0.8 (+/-1.1% stat) +/- 1
We present a precise optical and near-infrared determination of the Tip of the Red Giant Branch (TRGB) brightness in the Large and Small Magellanic Clouds (respectively LMC and SMC). The commonly used calibrations of the absolute magnitude of the TRG
The Carnegie-Chicago Hubble Program (CCHP) is re-calibrating the extragalactic SN Ia distance scale using exclusively Population II stars. This effort focuses on the Tip of the Red Giant Branch (TRGB) method, whose systematics are entirely independen