ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine-learning-assisted thin-film growth: Bayesian optimization in molecular beam epitaxy of SrRuO3 thin films

80   0   0.0 ( 0 )
 نشر من قبل Yuki Wakabayashi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Materials informatics exploiting machine learning techniques, e.g., Bayesian optimization (BO), has the potential to offer high-throughput optimization of thin-film growth conditions through incremental updates of machine learning models in accordance with newly measured data. Here, we demonstrated BO-based molecular beam epitaxy (MBE) of SrRuO3, one of the most-intensively studied materials in the research field of oxide electronics, mainly owing to its unique nature as a ferromagnetic metal. To simplify the intricate search space of entangled growth conditions, we ran the BO for a single condition while keeping the other conditions fixed. As a result, high-crystalline-quality SrRuO3 film exhibiting a high residual resistivity ratio (RRR) of over 50 as well as strong perpendicular magnetic anisotropy was developed in only 24 MBE growth runs in which the Ru flux rate, growth temperature, and O3-nozzle-to-substrate distance were optimized. Our BO-based search method provides an efficient experimental design that is not as dependent on the experience and skills of individual researchers, and it reduces experimental time and cost, which will accelerate materials research.



قيم البحث

اقرأ أيضاً

268 - T. Kawaguchi , H. Uemura , T. Ohno 2009
Epitaxial films of NdFeAsO were grown on GaAs substrates by molecular beam epitaxy (MBE). All elements including oxygen were supplied from solid sources using Knudsen cells. The x-ray diffraction pattern of the film prepared with the optimum growth c ondition showed no indication of impurity phases. Only (00l) peaks were observed, indicating that NdFeAsO was grown with the c-axis perpendicular to the substrate. The window of optimum growth condition was very narrow, but the NdFeAsO phase was grown with a very good reproducibility. Despite the absence of any appreciable secondary phase, the resistivity showed an increase with decreasing temperature.
We report on the growth of epitaxial ZnO thin films and ZnO based heterostructures on sapphire substrates by laser molecular beam epitaxy (MBE). We first discuss some recent developments in laser-MBE such as flexible ultra-violet laser beam optics, i nfrared laser heating systems or the use of atomic oxygen and nitrogen sources, and describe the technical realization of our advanced laser-MBE system. Then we describe the optimization of the deposition parameters for ZnO films such as laser fluence and substrate temperature and the use of buffer layers. The detailed structural characterization by x-ray analysis and transmission electron microscopy shows that epitaxial ZnO thin films with high structural quality can be achieved, as demonstrated by a small out-of-plane and in-plane mosaic spread as well as the absence of rotational domains. We also demonstrate the heteroepitaxial growth of ZnO based multilayers as a prerequisite for spin transport experiments and the realization of spintronic devices. As an example, we show that TiN/Co/ZnO/Ni/Au multilayer stacks can be grown on (0001)-oriented sapphire with good structural quality of all layers and well defined in-plane epitaxial relations.
We demonstrate the making of BaZrS3 thin films by molecular beam epitaxy (MBE). BaZrS3 forms in the orthorhombic distorted-perovskite structure with corner-sharing ZrS6 octahedra. The single-step MBE process results in films smooth on the atomic scal e, with near-perfect BaZrS3 stoichiometry and an atomically-sharp interface with the LaAlO3 substrate. The films grow epitaxially via two, competing growth modes: buffered epitaxy, with a self-assembled interface layer that relieves the epitaxial strain, and direct epitaxy, with rotated-cube-on-cube growth that accommodates the large lattice constant mismatch between the oxide and the sulfide perovskites. This work sets the stage for developing chalcogenide perovskites as a family of semiconductor alloys with properties that can be tuned with strain and composition in high-quality epitaxial thin films, as has been long-established for other systems including Si-Ge, III-Vs, and II-Vs. The methods demonstrated here also represent a revival of gas-source chalcogenide MBE.
127 - L. Riney , C. Bunker , S.-K. Bac 2020
SrxBi2Se3 is a candidate topological superconductor but its superconductivity requires the intercalation of Sr by into the van-der-Waals gaps of Bi2Se3. We report the synthesis of SrxBi2Se3 thin films by molecular beam epitaxy, and we characterize th eir structural, vibrational and electrical properties. X-ray diffraction and Raman spectroscopy show evidence of substitutional Sr alloying into the structure, while transport measurements allow us to correlate the increasing Sr content with an increased n-type doping, but do not reveal superconductivity down to 1.5K. Our results suggest that Sr predominantly occupies sites within a quintuple layer, simultaneously substituting for Bi and as an interstitial. Our results motivate future density functional studies to further investigate the energetics of Sr substitution into Bi2Se3.
We have synthesized Fe$_{1+y}$Te thin films by means of molecular beam epitaxy (MBE) under Te-limited growth conditions. We found that epitaxial layer-by-layer growth is possible for a wide range of excess Fe values, wider than expected from what is known on the bulk material. Using x-ray magnetic circular dichroism spectroscopy at the Fe L$_{2,3}$ and Te M$_{4,5}$ edges, we observed that films with high excess Fe contain ferromagnetic clusters while films with lower excess Fe remain nonmagnetic. Moreover, x-ray absorption spectroscopy showed that it is possible to obtain films with very similar electronic structure as that of a high quality bulk single crystal Fe$_{1.14}$Te. Our results suggest that MBE with Te-limited growth may provide an opportunity to synthesize FeTe films with smaller amounts of excess Fe as to come closer to a possible superconducting phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا