ﻻ يوجد ملخص باللغة العربية
We present twelve new simulations of unequal mass neutron star mergers. The simulations were preformed with the SpEC code, and utilize nuclear-theory based equations of state and a two-moment gray neutrino transport scheme with an improved energy estimate based on evolving the number density. We model the neutron stars with the SFHo, LS220 and DD2 equations of state (EOS) and we study the neutrino and matter emission of all twelve models to search for robust trends between binary parameters and emission characteristics. We find that the total mass of the dynamical ejecta exceeds $0.01M_odot$ only for SFHo with weak dependence on the mass-ratio across all models. We find that the ejecta have a broad electron fraction ($Y_e$) distribution ($approx 0.06-0.48$), with mean $0.2$. $Y_e$ increases with neutrino irradiation over time, but decreases with increasing binary asymmetry. We also find that the models have ejecta with a broad asymptotic velocity distribution ($approx 0.05-0.7c$). The average velocity lies in the range $0.2c - 0.3c$ and decreases with binary asymmetry. Furthermore, we find that disk mass increases with binary asymmetry and stiffness of the EOS. The $Y_e$ of the disk increases with softness of the EOS. The strongest neutrino emission occurs for the models with soft EOS. For (anti) electron neutrinos we find no significant dependence of the magnitude or angular distribution or neutrino luminosity with mass-ratio. The heavier neutrino species have a luminosity dependence on mass-ratio but an angular distribution which does not change with mass-ratio.
We present three-dimensional simulations of the dynamics of binary neutron star (BNS) mergers from the late stage of the inspiral process up to $sim 20$ ms after the system has merged, either to form a hyper-massive neutron star (NS) or a rotating bl
As current gravitational wave (GW) detectors increase in sensitivity, and particularly as new instruments are being planned, there is the possibility that ground-based GW detectors will observe GWs from highly eccentric neutron star binaries. We pres
We continue our study of the binary neutron star parameter space by investigating the effect of the spin orientation on the dynamics, gravitational wave emission, and mass ejection during the binary neutron star coalescence. We simulate seven differe
With the recent advent of multi-messenger gravitational-wave astronomy and in anticipation of more sensitive, next-generation gravitational-wave detectors, we investigate the dynamics, gravitational-wave emission, and nucleosynthetic yields of numero
Only numerical relativity simulations can capture the full complexities of binary black hole mergers. These simulations, however, are prohibitively expensive for direct data analysis applications such as parameter estimation. We present two new fast