ﻻ يوجد ملخص باللغة العربية
We report on the development of a polarization-sensitive dichroic (150/220 GHz) detector array for the Cosmology Large Angular Scale Surveyor (CLASS) delivered to the telescope site in June 2019. In concert with existing 40 and 90 GHz telescopes, the 150/220 GHz telescope will make observations of the cosmic microwave background over large angular scales aimed at measuring the primordial B-mode signal, the optical depth to reionization, and other fundamental physics and cosmology. The 150/220 GHz focal plane array consists of three detector modules with 1020 transition edge sensor (TES) bolometers in total. Each dual-polarization pixel on the focal plane contains four bolometers to measure the two linear polarization states at 150 and 220 GHz. Light is coupled through a planar orthomode transducer (OMT) fed by a smooth-walled feedhorn array made from an aluminum-silicon alloy (CE7). In this work, we discuss the design, assembly, and in-lab characterization of the 150/220 GHz detector array. The detectors are photon-noise limited, and we estimate the total array noise-equivalent power (NEP) to be 2.5 and 4 aW$sqrt{mathrm{s}}$ for 150 and 220 GHz arrays, respectively.
The Cosmology Large Angular Scale Surveyor (CLASS) observes the polarized cosmic microwave background (CMB) over the angular scales of 1$^circ lesssim theta leq$ 90$^circ$ with the aim of characterizing primordial gravitational waves and cosmic reion
The Cosmology Large Angular Scale Surveyor (CLASS) aims to detect and characterize the primordial B-mode signal and make a sample-variance-limited measurement of the optical depth to reionization. CLASS is a ground-based, multi-frequency microwave po
Next generation cosmic microwave background (CMB) polarization anisotropy measurements will feature focal plane arrays with more than 600 millimeter-wave detectors. We make use of high-resolution photolithography and wafer-scale etch tools to build p
We describe the construction and characterization of the 280 GHz bolometric focal plane units (FPUs) to be deployed on the second flight of the balloon-borne SPIDER instrument. These FPUs are vital to SPIDERs primary science goal of detecting or plac
We describe the design and measurement of feedhorn-coupled, transition-edge sensor (TES) polarimeters with two passbands centered at 220 GHz and 280 GHz, intended for observations of the cosmic microwave background. Each pixel couples polarized light