ترغب بنشر مسار تعليمي؟ اضغط هنا

PHSD -- a microscopic transport approach for strongly interacting systems

98   0   0.0 ( 0 )
 نشر من قبل Olga Soloveva
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the basic ideas of the Parton-Hadron-String Dynamics (PHSD) transport approach which is a microscopic covariant dynamical model for strongly interacting systems formulated on the basis of Kadanoff-Baym equations for Greens functions in phase-space representation (in 1st order gradient expansion beyond the quasi-particle approximation). The approach consistently describes the full evolution of a relativistic heavy-ion collision from the initial hard scatterings and string formation through the dynamical deconfinement phase transition to the strongly-interacting quark-gluon plasma (sQGP) as well as hadronization and the subsequent interactions in the expanding hadronic phase. The PHSD approach has been applied to p+p, p+A and A+A collisions from lower SIS to LHC energies and been successful in describing a large number of experimental data including single-particle spectra, collective flow and electromagnetic probes. Some highlights of recent PHSD results will be presented.



قيم البحث

اقرأ أيضاً

The effects of the propagation of particles which have a finite life-time and an according broad distribution in their mass spectrum are discussed in the context of a transport descriptions. In the first part some example cases of mesonic modes in nu clear matter at finite densities and temperatures are presented. These equilibrium calculations illustrate the dynamical range of spectral distributions to be adequately covered by non-equilibrium description of the dynamics of two nuclei colliding at high energies. The second part addresses the problem of transport descriptions which properly account for the damping width of the particles. A systematic and general gradient approximation is presented in the form of diagrammatic rules which permit to derive a self-consistent transport scheme from the Kadanoff--Baym equation. The scheme is conserving and thermodynamically consistent provided the self-energies are obtained within the Phi-derivable two-particle irreducible (2PI) method of Baym. The merits, the limitations and partial cures of the limitations of this transport scheme are discussed in detail.
118 - Carsten Greiner 2001
This talk is devoted to review the field of strangeness production in (ultra-)relativistic heavy ion collisions within our present theoretical understanding. Historically there have been (at least) three major ideas for the interest in the production of strange hadronic particles: (1) mass modification of the kaons in a (baryon-)dense environment; (2) (early) K+ - production probes the nuclear equation of state (EoS); (3) enhanced strangeness production especially in the (multi-)strange (anti-)baryon channels as a signal of quark gluon plasma (QGP) formation. As a guideline for the discussion I employ the extensive experience with microscopic hadronic transport models. In addition, I elaborate on the recent idea of antihyperon production solely by means of multi-mesonic fusion-type reactions.
Single-particle energies of the $Lambda_c$ chamed baryon are obtained in several nuclei from the relevant self-energy constructed within the framework of a perturbative many-body approach. Results are presented for a charmed baryon-nucleon ($Y_cN$) p otential based on a SU(4) extension of the meson-exchange hyperon-nucleon potential $tilde A$ of the J{u}lich group. Three different models (A, B and C) of this interaction, that differ only on the values of the couplings of the scalar $sigma$ meson with the charmed baryons, are considered. Phase shifts, scattering lengths and effective ranges are computed for the three models and compared with those predicted by the $Y_cN$ interaction derived in Eur. Phys. A {bf 54}, 199 (2018) from the extrapolation to the physical pion mass of recent results of the HAL QCD Collaboration. Qualitative agreement is found for two of the models (B and C) considered. Our results for $Lambda_c$-nuclei are compatible with those obtained by other authors based on different models and methods. We find a small spin-orbit splitting of the $p-, d-$ and $f-$wave states as in the case of single $Lambda$-hypernuclei. The level spacing of $Lambda_c$ single-particle energies is found to be smaller than that of the corresponding one for hypernuclei. The role of the Coulomb potential and the effect of the coupling of the $Lambda_cN$ and $Sigma_cN$ channels on the single-particle properties of $Lambda_c-$nuclei are also analyzed. Our results show that, despite the Coulomb repulsion between the $Lambda_c$ and the protons, even the less attractive one of our $Y_cN$ models (model C) is able to bind the $Lambda_c$ in all the nuclei considered. The effect of the $Lambda_cN-Sigma_cN$ coupling is found to be almost negligible due to the large mass difference of the $Lambda_c$ and $Sigma_c$ baryons.
87 - V. Koch , A. Majumder , 2005
The correlation between baryon number and strangeness elucidates the nature of strongly interacting matter, such as that formed transiently in high-energy nuclear collisions. This diagnostic can be extracted theoretically from lattice QCD calculation s and experimentally from event-by-event fluctuations. The analysis of present lattice results above the critical temperature severely limits the presence of q-qbar bound states, thus supporting a picture of independent (quasi)quarks.
The thermodynamic geometry formalism is applied to strongly interacting matter to estimate the deconfinement temperature. The curved thermodynamic metric for Quantum Chromodynamics (QCD) is evaluated on the basis of lattice data, whereas the hadron r esonance gas model is used for the hadronic sector. Since the deconfinement transition is a crossover, the geometric criterion used to define the mbox{(pseudo-)critical} temperature, as a function of the baryonchemical potential $mu_B$, is $R(T,mu_B)=0$, where $R$ is the scalar curvature. The (pseudo-)critical temperature, $T_c$, resulting from QCD thermodynamic geometry is in good agreement with lattice and phenomenological freeze-out temperature estimates. The crossing temperature, $T_h$, evaluated by the hadron resonance gas, which suffers of some model dependence, is larger than $T_c$ (about $20%$) signaling remnants of confinement above the transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا