ﻻ يوجد ملخص باللغة العربية
Amplituhedra $mathcal{A}_{n,k}^{(m)}$ are geometric objects of great interest in modern mathematics and physics: for mathematicians they are combinatorially rich generalizations of polygons and polytopes, based on the notion of positivity; for physicists, the amplituhedron $mathcal{A}^{(4)}_{n,k}$ encodes the scattering amplitudes of the planar $mathcal{N}=4$ super Yang-Mills theory. In this paper we study the structure of boundaries for the amplituhedron $mathcal{A}_{n,k}^{(2)}$. We classify all boundaries of all dimensions and provide their graphical enumeration. We find that the boundary poset for the amplituhedron is Eulerian and show that the Euler characteristic of the amplituhedron equals one. This provides an initial step towards proving that the amplituhedron for $m=2$ is homeomorphic to a closed ball.
Positive geometries provide a modern approach for computing scattering amplitudes in a variety of physical models. In order to facilitate the exploration of these new geometric methods, we introduce a Mathematica package called ``amplituhedronBoundar
The momentum amplituhedron is a positive geometry encoding tree-level scattering amplitudes in $mathcal{N}=4$ super Yang-Mills directly in spinor-helicity space. In this paper we classify all boundaries of the momentum amplituhedron $mathcal{M}_{n,k}
In this paper we define a new object, the momentum amplituhedron, which is the long sought-after positive geometry for tree-level scattering amplitudes in $mathcal{N}=4$ super Yang-Mills theory in spinor helicity space. Inspired by the construction o
The well-known moment map maps the Grassmannian $Gr_{k+1,n}$ and the positive Grassmannian $Gr^+_{k+1,n}$ onto the hypersimplex $Delta_{k+1,n}$, which is a polytope of codimension $1$ inside $mathbb{R}^n$. Over the last decades there has been a great
We initiate the systematic study of emph{local positive spaces} which arise in the context of the Amplituhedron construction for scattering amplitudes in planar maximally supersymmetric Yang-Mills theory. We show that all local positive spaces releva