ترغب بنشر مسار تعليمي؟ اضغط هنا

How accurately we know the standard $^{252}$Cf(sf) neutron multiplicity?

127   0   0.0 ( 0 )
 نشر من قبل Roberto Capote
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Small uncertainties obtained for the Neutron Standards have been associated with possible missing correlations in the input data, with an incomplete uncertainty budget of the employed experimental database or with unrecognized uncertainty sources common to many measurements. While further detailed studies may improve the first two issues, the issue of potential unrecognized uncertainties and correlations between different experiments has long been neglected. We address this gap with a test-case study ons the evaluation of the total neutron multiplicity of the $^{252}$Cf(sf) source, which is included in the evaluation of the Thermal Neutron Constants within the Neutron Standards.

قيم البحث

اقرأ أيضاً

The emission of neutrons and gamma rays by fission fragments reveal important information about the properties of fragments immediately following scission. The initial fragment properties, correlations between fragments, and emission competition give rise to correlations in neutron-gamma emission. Neutron-gamma correlations are important in nonproliferation applications because the characterization of fissionable samples relies on the identification of signatures in the measured radiation. Furthermore, recent theoretical and experimental advances have proposed to explain the mechanism of angular momentum generation in fission. In this paper, we present a novel analysis method of neutrons and gamma rays emitted by fission fragments that allows us to discern structure in the observed correlations. We have analyzed data collected on ce{^{252}Cf}(sf) at the Chi-Nu array at the Los Alamos Neutron Science Center. Through our analysis of the energy-differential neutron-gamma multiplicity covariance, we have observed enhanced neutron-gamma correlations, corresponding to rotational band gamma-ray transitions, at gamma-ray energies of $0.7$ and $1.2$ MeV. To shed light on the origin of this structure, we compare the experimental data with the predictions of three model calculations. The origin of the observed correlation structure is understood in terms of a positive spin-energy correlation in the generation of angular momentum in fission.
Background: Spontaneous fission events emit prompt neutrons correlated with one another in emission angle and energy. Purpose: We explore the relationship in energy and angle between correlated prompt neutrons emitted from 252Cf spontaneous fission. Methods: Measurements with the Chi-Nu array provide experimental data for coincident neutrons tagged with a fission chamber signal with 10 degree angular resolution and 1 ns timing resolution for time-of-flight energy calculations. The experimental results are compared to simulations produced by the fission event generators CGMF, FREYA, and MCNPX-POLIMI IPOL(1)=1. Results: We find that the measurements and the simulations all exhibit anisotropic neutron emission, though differences exist between fission event generators. Conclusions: This work shows that the dependence of detected neutron energy on the energy of a neutron detected in coincidence, although weak, is non-negligible, indicating that there may be correlations in energy between two neutrons emitted in the same fission event.
The time-dependent generator coordinate method with the gaussian overlap approximation (TDGCM+GOA) formalism is applied to describe the fission of $^{252}$Cf. We perform analysis of fission from the initial states laying in the energetic range from t he ground state to the state located 4 MeV above the fission barrier. The fission fragment mass distributions, obtained for different parity, energy of levels and types of mixed states, are calculated and compared with experimental data. The impact of the total time of wave packet propagation on the final results is studied as well. The weak dependence of obtained mass yields on the initial conditions is shown.
We give an overview about equations of state (EOS) which are currently available for simulations of core-collapse supernovae and neutron star mergers. A few selected important aspects of the EOS, such as the symmetry energy, the maximum mass of neutr on stars, and cluster formation, are confronted with constraints from experiments and astrophysical observations. There are just very few models which are compatible even with this very restricted set of constraints. These remaining models illustrate the uncertainty of the uniform nuclear matter EOS at high densities. In addition, at finite temperatures the medium modifications of nuclear clusters represent a conceptual challenge. In conclusion, there has been significant development in the recent years, but there is still need for further improved general purpose EOS tables.
We introduce a new framework for quantifying correlated uncertainties of the infinite-matter equation of state derived from chiral effective field theory ($chi$EFT). Bayesian machine learning via Gaussian processes with physics-based hyperparameters allows us to efficiently quantify and propagate theoretical uncertainties of the equation of state, such as $chi$EFT truncation errors, to derived quantities. We apply this framework to state-of-the-art many-body perturbation theory calculations with nucleon-nucleon and three-nucleon interactions up to fourth order in the $chi$EFT expansion. This produces the first statistically robust uncertainty estimates for key quantities of neutron stars. We give results up to twice nuclear saturation density for the energy per particle, pressure, and speed of sound of neutron matter, as well as for the nuclear symmetry energy and its derivative. At nuclear saturation density the predicted symmetry energy and its slope are consistent with experimental constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا